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FOREWORD

This report is submitted in accordance with the statement
of work of Contract NAS1-11499.

The work was conducted by the Applied Thermal Section of
the Mechanical Engineering and Mechanics Division at the Southern
Research Institute, Birmingham, Alabama, between March, 1973 and
April, 1974. Mr. R. W. Robertson was Project Engineer and Dr.
Ronald K. Clark of the Langley Research Center was the technical
representative for this contract.
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SUMMARY

An evaluation of the thermal and mechanical properties
was performed on a molded low-density elastomeric ablation
material designated as Material B. This material contained:

1) Twenty-five parts by weight GE RTV 655 Silicone
Resin

2) Fifty parts by weight Union Carbide BJO-0930 phenolic
microballons primed with GE SS4155

3) Fifteen parts by weight Emerson Cummings IGl0l glass
bubbles

4) Ten parts by weight Polymer Corporation Polypenco
66D nylon primed with GE SS4155

5) The above matrix was reinforced with glass fibers
1/4 inch long. The percentage by weight of the
glass fibers to the total composite was 15%.

Both the virgin and charred states were examined to provide
meaningful inputs to the design of a thermal protection system.
This evaluation was a continuation of a previous program where the
same properties were determined on another low-density elastomeric
composite designated as Material A [1]'.

On the virgin material the thermal conductivity ranged from
0.044 W/m K at 100 K to 0.053 W/m K at 410 K, decreasing to 0.050
W/m K at 520 K. The heat capacity went from 0.55 J/g K at 100 K
to 1.75 J/gK at 500 K. The tensile strength at room temgerature
averaged 41,000 N/m? in the "a" direction and 38,000 N/m? in the
"b" direction. The average compressive strength at room tempera-
ture in the "a" direction was 192,000 N/m? and in the "b" direc-
tion 186,000 N/m?.

Chars representative of the flight chars formed during
ablation were prepared in a laboratory furnace from 600 K to
1700 K and properties of effective thermal conductivity, heat
capacity, porosity and permeability were determined on the furnace
chars formed at various temperature levels within the range.
This provided a "boxing" of the data which will enable the
prediction of the transient response of the material during
"flight" ablation.

1 Bracketed numbers indicate reference listed at the end
of the report.




The properties indicated that in the range of 500 K to
800 K all degradation and volatilization occurs since at 800 K
the weight loss was almost maximum and bulk density was minimum.
The thermal conductivity at atmospheric pressure increased
rapidly from 0.089 W/mK at 800 K to 0.68 W/mK at 1730 K. The
heat capacity curve had a relative minimum of 1.6 J/gK at 800 K,
increasing to a relative maximum of 2.55 J/gK at 1100 K.
Between 1100 K and 1365 K the heat capacity values decreased to
1.95 J/gK and remained constant to 1740 K.

X-ray diffraction analyses were performed on samples from
the 1300 K and 1700 K furnace chars and no ordered carbon was
detected. Alpha cristobalite was the only identifiable compound.

Comparisons were made between the properties of prior
Material A and Material B. Definite trends existed due to
the influence of the honeycomb reinforcement in Material A.

THE THERMAL AND MECHANICAL PROPERTIES OF A LOW-DENSITY
GLASS-FIBER-REINFORCED ELASTOMERIC ABLATION MATERIAL

INTRODUCTION
Scope

This is the final report to the National Aeronautics and
Space Administration, Langley Research Center, for the work
performed under Contract NAS1-11499, This program involved
the evaluation of thermal and physical properties on a low-
density elastomeric ablation material in both the uncharred
(virgin) and charred state. It is the second final report under
this program. The first final report [l] involved the evalua-
tion of Material A and this report deals with Material B.
Material A was a honeycomb reinforced elastomeric composite
whereas Material B was an elastomeric composite reinforced
with glass fibers.



Background

The material evaluated is being considered as an ablative
material to be used in the thermal protection system for the
shuttle. Both thermal and mechanical data were measured on
both the virgin and charred material to provide meaningful inputs
to the design of the thermal protection system. To accomplish
this, the evaluation of thermal conductivity, heat capacity,
tensile strength and compressive strength for the virgin material
was necessary; and for the charred material, thermal conductivity,
heat capacity, permeability and porosity were examined.

The properties of the char composite were intended to
provide data to predict the transient response of the material
during ablation. Therefore, the "boxing" approach developed at
Southern Research Institute was used. [2] This method involves
predegrading the material at some preselected temperature, pre-
paring specimens and performing property measurements up to the
precharring temperature with steady-state devices. The locus
of points of property versus precharring temperature represents
the transient behavior of the property during the first exposure.
The advantages of this method are that it provides a dimensionally
stable specimen and allows the use of steady-state measurement
techniques. This approach seems to represent the best state-of-
the-art technique provided that the structures of the flight and
laboratory chars are similar and that additional time-at-
temperature during the measurements does not significantly alter
the properties.

Program Performed

The evaluation of the virgin material included the thermal
conductivity and heat capacity from 150 to 500 K. Tensile and
compressive strength and modulus were determined on the virgin
material at room temperature. The mechanical properties were
determined in the two in-plane directions and the thermal conduc-
tivity was determined in the thickness direction.

The first step in evaluating the charred material was the
investigation of the methods necessary to prepare chars which
would best simulate the chars formed during flight. This
investigation was conducted by charring several samples in a
furnace under various conditions and comparing the resultant
char with two chars supplied by NASA that were formed in the
arc-jet torch. The main criteria of the char preparation was to
prepare chars suitable for evaluation as well as simulate the
char formed during ablation in flights.



The furnace chars were prepared at five temperature levels
from 600 K to 1750 K. This temperature range was selected since
the arc-jet chars were formed over that range, which is inclusive
of the temperatures predicted during flight.

Properties determined on the chars were effective thermal
conductivity, heat capacity, permeability and porosity. The
effective thermal conductivity was determined in the thickness
direction on the various chars up to their formation temperature,
enabling a boxing analysis of the data. Values were determined
at mean specimen temperatures up to slightly below the char
temperature so that the hot face of the specimen did not exceed
the temperature at which the char was formed. Data were measured
in an environment of nitrogen at 1333 N/m?, 49,329 N/m? and
101,325 N/m? (10,370 and 760 torr).

The heat capacity was determined on the various chars up to
the formation temperatures. The permeability was determined on
the various chars at room temperature, with a few runs being made
to 800 K to assess the effect of temperature. The porosity of the
chars was determined with bulk and true density measurements at
room temperature.

MATERIAL DESCRIPTION AND CUTTING PLANS

Only one material was evaluated under this program and
it was designated Material B. It was a molded, low-density,
elastomeric material. This material contained:

1) Twenty-five parts by weight GE RTV 655 Silicone
Resin

2) Fifty parts by weight Union Carbide BJO-0930 phenolic
microballons primed with GE SS4155

3) Fifteen parts by weight Emerson Cummings IGl01l glass
bubbles

4) Ten parts by weight Polymer Corporation Polypenco
66D nylon primed with GE SS4155

5) The above matrix was reinforced with glass fibers
1/4 inch long. The percentage by weight of the
glass fibers to the composite was 5%.

The elastomeric composite of this material (Items 1 through 4)
is basically the same as the composite used for Material A
with the exception that glass bubbles were used instead of the




silica bubbles. Also, this elastomeric composite was reinforced
with glass fibers rather than the honeycomb reinforcement used
in Material A.

A total of four panels were received which were 30.5 cm x
30.5 cm square x 4.8 cm thick.

There was no visual basis for assigning in-plane directions
to the panels, since there was no preferred direction or
orientation of the fibers. Since the mechanical properties were
to be determined in both the "a" and "b" directions, the panel
used for these evaluations was arbitrarily assigned an "a" and
a "b" direction. The "c" direction was in the thickness of the
panel. The effective thermal conductivity of the virgin and
charred material was determined in the "c¢" direction, as was the
permeability of the charred material.

Cutting plans for the three panels (numbered 1 through 3)
used in these evaluations are shown in Figures 1 through 4.
These cutting plans show the extraction of specimens for the
evaluation of the virgin material and the extraction of blanks
employed for charring. The specimens extracted from the char
blanks after charring are also indicated in the figures.

A numbering system was devised that designated the type
of specimen, specimen number, direction (if applicable), panel
number from which it was extracted, material and charring
conditions (where applicable).

The numbering system for the virgin specimens was as follows:
AS -1 C-2B
=T

L—Material Designation

anel Number
(1 through 3)

———————Direction of Evaluation
(where applicable)

Specimen Number

Type of Specimen

AS - Conductivity Specimen

HC

Heat Capacity Specimen

|
I

Tensile Specimen

C - Compressive Specimen



The numbering system for the char blanks was as follows:

cB -1 -2 B - 808 - R2D

T T T T .
-Charring Conditions
R1D - Rapid One-Dimensional
R2D - Rapid Twe=Dimensicnal
Maximum Exposure Temperature

in K
‘Material Designation
— e e PAN€ 1l Numberxr
Blank Numbexr
e i et e e ...ChaTY Blank

The specimens extracted from the char blanks were
designated as follows:

CR - 1 C - CB=30 -2-

B
T-~Material Identification

—Panel Number

Char Blank Identification

Direction of Measurement

Specimen Number

JType of Specimen

CR

Thermal Conductivity
(Comparative Rod)

RI - Thermal Conductivity
(Radial Inflow)

HC - Heat Capacity
P - Permeability
BD - Bulk Density

TD - True Density




In addition to the four panels, four blocks were received
that had been exposed to the arc-jet. These were necessary to
provide a baseline for comparison of the furnace chars prepared
at various conditions. The four blocks were about 12.7 cm x
6.3 cm x 3.4 cm thick. Originally, these blocks were 12.7 cm x
12.7 cm that were subjected to the arc-jet and then sectioned
in half. Some true density specimens were extracted from one
of the blocks. The specimen numbers extracted from the arc-jet
were as follows:

™ -1 - BlL - AJ - 3

T;—Zone from which specimen
was taken

Arc-Jet Char

Block Number as Received
from NASA

Specimen Number (designation
same as before)

APPARATUSES AND PROCEDURES

Char Preparations

Chars were prepared in a high temperature furnace which
employs an electrically heated graphite heater tube. The
heater tube is cylindrical in shape. The heater tube tempera-
ture is controlled manually with a powerstat which drives a
25 kw transformer.

Chars were prepared by immersion of the char blanks in the
furnace after it had been preheated to a selected temperature
level. The char blanks which were 3.81 cm wide x 7.62 cm long
x 5.08 cm thick were supported in a holder which could be
rapidly inserted and extracted from the furnace. A picture of
the specimen holder is given in Figure 5. Shown in the figure
is the final system decided on after the preliminary char
evaluation was completed which will be discussed later. One
blank was charred at a time with both faces exposed to the radiant
heating from the heater tube of the furnace. The graphite felt
insulation around the edges prevented lateral heating. This
arrangement provided two-dimensional heating of the blanks which



caused the char formation to progress from both faces to the
center.

The maximum temperature was measured for each char prepared.
This was done by measuring the face temperature of the char
through the sight port in the furnace. Temperatures were measured
either with chromel/alumel thermocouples installed at the
specimen surface through the sight port or by direct readings
with an optical pyrometer. When using the optical pyrometer,
appropriate corrections were made for the sight window.

The specimens were cooled rapidly by withdrawing the
specimen from the furnace at the end of the heating cycle and
immersing it inside a cold cylinder purged with helium. A
helium purge was used in the furnace during all of the char
work. A helium purge also was inserted at the bottom of the
heater tube with the gas traveling from bottom to top to sweep
the pyrolysis gases toward the top of the furnace.

The furnace preheat temperatures employed were approximately
600 K, 800 K, 1100 K, 1370 K and 1730 K. The correlation between
furnace preheat temperature and cold wall heat flux is given in
Table 1. As previously reported [3], the correlation is
rather good between the radiant cold wall heat flux and the
convective cold wall heat flux in a high enthalpy nitrogen gas
stream.

The thermal response of the chars prepared in the laboratory
were defined from measurements of temperature at the surface and
in-depth. Chromel/alumel thermocouples were installed in the
char centrally between the two heated surfaces. In some of the
1100 K, 1300 K and 1700 K furnace chars, a thermocouple was placed
about 0.7 cm beneath the surface so the temperature-time history
could be obtained for the zone from which the specimen would
come. The thermocouple wires were housed in double bore alumina
tubing and were inserted in holes drilled parallel to the heated
surfaces.

The temperature measurements were used to define the
time required for the front face and the in-depth thermocouple
to reach equilibrium. This aided in defining the uniformity
of the char with regard to temperature exposure. The results
of the initial measurements, which established the response,
were used throughout the program as being representative for
all chars prepared.




Some of the chars prepared at temperature were made into
specimens by careful handsanding; however, most of these
samples were extremely friable and were impregnated with poly-
alphamethylstyrene (Amoco Resin 18-210) prior to the machining
operation. Then, the samples were machined to the desired
dimensions. The impregnant was removed by baking the machined
sample in an inert environment for about 1 hour at 672 K. At
this temperature the resin turns to a gas and leaves the specimen
with essentially no residue.

It was found that the 800 K specimen for the Guarded Compara-
tive Rod Apparatus could best be obtained by first cutting the
specimen shape from the virgin material, then charring the
specimen in the furnace which was preheated to 800 K. This
minimized handling of the charred material and thus, reduced
damage to the specimen. This specimen was designated.
CR-3C-CB-0-1B. It was designated as coming from char blank 0
since it did not actually come from a char blank.

Thermal Conductivity

Three apparatuses were employed to determine the thermal
conductivity of both the virgin and charred material. The
ASTM C-177 guarded hot plate was used to 600 K for the virgin
and 600 K precharred material., The comparative rod apparatus
was used to 1100 K for the chars prepared in the furnace above
800 K. The radial inflow apparatus was used up to 1365 K and
1730 K for the chars prepared at 1365 K and 1730 K, respectively.

Guarded Hot Plate Apparatus - A complete description of
the ASTM C-177 guarded hot plate apparatus is included in
Appendix A. For these evaluations the smaller apparatus with
the 8.25 cm heater plate was employed. Due to the nature of
this material, the evaluations required the following exceptions
to the described procedures:

l. The specimen discs were split into a central and guard
ring to minimize radial heat exchange. Figure 6 is a
drawing of the specimen disc employed.

2, Temperatures on both runs were measured internally
with thermocouples inserted in 0.1 cm diameter
temperature wells (see Figure 7). The internal
thermocouple beads were potted in place with an RTV
adhesive., The wires were insulated with a double bore
alumina tube broken every 0.64 cm along its length to
minimize thermal drain from the bead.



3. Temperatures in the guard ring of the specimen were
measured and the difference between the guard and
the central were maintained within 10 percent of the
temperature gradient across the specimen.

Comparative Rod Apparatus - The comparative rod apparatus
is described in Appendix B. This apparatus consists basically
of two cylindrical reference pieces of known thermal conductivity
stacked in series with the cylindrical specimen. A small
electrical heater is placed at one end of the rod, to introduce
heat through the stack, and a heat sink or a second heater is
employed at the opposite end of the stack to maintain the temp-
erature drop through the specimen at the desired level. Radial
losses are minimized by means of radial guard heaters surrounding
the rod. The annulus between the rod and the guard heaters and
surrounding the guard heater is packed with an insulation, usually
diatomaceous earth or thermatomic carbon.

This method compares the conductivity of the specimen to
that of the references and requires true axial heat flow down
the column with a minimum of radial heat exchange.

Modification of this apparatus was necessary for this
program since the standard assembly is only accurate for
measurements of conductivity above 1.4 W/mK. The reason for
this is that analyses [4,5] have shown that heat can shunt the
specimen (through the insulation) particularly when the thermal
conductivity of the specimen is not an order-of-magnitude or
more than that of the insulation and the guard heater is, say,
twice the diameter of the specimen or more. Note that the
shunting effectively gives a larger specimen area and results in
an erroneously low temperature difference in the specimen
relative to the reference (assuming that the references have a
higher thermal conductivity than the specimen). This yields
erroneously high values of thermal conductivity. With certain
values for the thermal conductivities of the references,
specimen and insulation, guard heater to specimen diameter
ratio and guard to specimen temperature profile, these errors
can easily reach 100 percent.
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Analyses [4, 5, 6] have shown that the heat shunting
problem can be overcome if the following conditions are
satisfied:

1. The guard profile matches the specimen profile.

2. The ratio of guard diameter to specimen diameter
is as near unity as possible.

These concepts were applied to the modified technique used here.

The experimental configuration used for the measurements is
shown in Figure 7. The assembly consisted of a central column
comprised of 2.54 cm diameter specimen sandwiched between two
references of known thermal conductivity. Guard rings made of
the same materials as the specimen and references surrounded the
central column. The guard rings were constructed to match the
specimen and reference lengthwise. The annulus between the
central column and guard ring was 0.16 cm wide which gives a
ratio guard diameter to specimen diameter of 1.125.

The references used were made from slip cast fused silica,
the conductivity of which has been evaluated and well defined
from several measurements made in the ASTM guarded hot plate
apparatus,

Heaters made of Armco iron were placed on either end of
the column to control heat flow and mean temperature. Armco
iron was used because its thermal conductivity is about 200
times that of the specimen and; hence, the temperature gradient
along a radial line at the top of the build-up was estimated to
be no more than one or two degrees. Thus, the guard and central
temperatures are matched at the ends. The entire assembly is
surrounded by diatomaceous earth insulation contained inside a
10 cm diameter guard heater.

Temperatures are measured at two axial locations in each
reference and in the specimen. A beaded chromel/alumel thermo-
couple was inserted into the drilled holes in a double bore
alumina insulator. The insulator was broken about every 0.3 cm
to minimize conduction losses. The thermocouples in the
specimen were potted in place at the bead with Silastic RTV-731,
silicone rubber.

Specimen gage lengths were determined from radiographs or
X-rays. The X-rays were examined at 10X magnification to
determine the gage distance relative to the overall thickness.

b=
I._l



The idea for the assembly shown in Figure 7 was to use
identical materials for a guard ring and thus create as closely
as possible a matched guard condition to minimize radial heat
exchange. Also, a thin specimen, 0.635 cm, is used because this
also minimizes radial heat exchange and heat shunting. Further,
the annulus is kept small to minimize heat shunting which occurs
even with matched guarding.

In practice, perfect matching of the guard and central
columns is not achieved. Hence, corrections for radial heat
exchange are made to the measured data based on the measured
temperature profiles. Further, corrections are made for the
heat shunting through the annulus.

Details of the corrections made to the measured data are
included in Appendix C. Even though two different corrections
are applied to the data, the maximum value for both corrections
during this program did not exceed 12 percent. Hence, sizeable
uncertainties in the correction procedures do not create large
uncertainties to the final data. The combined uncertainty
for the several sources of uncertainty present is *8 percent
increasing to *10 percent above 800 K.

Radial Inflow Apparatus - A complete description of the
radial inflow apparatus is included in Appendix D. Due to the
structure of this material, cylindrical specimens could not be
employed; therefore, the strip assembly was used. A sectional
view of this assembly is shown in Figure 8.

The assembly consisted of four specimen strips sandwiched
between strips of ATJ graphite which contain wells for
temperature measurement. The corners of the build-up were
packed with thermatomic carbon to minimize extraneous heat
flows. Pyrolytic graphite strips were used on the inside to
aid in maintaining the isotherms normal to the directions of
heat flow. The assembly was placed concentric about a calori-
meter with a 1.27 cm gage section, and the annulus between the
calorimeter and the pyrolytic graphite strips was packed with
graphite.

Positive interfacial contact between the strips was assured
in this assembly by the addition of expansion pistons to the
support cylinder. These pistons were designed to counteract
differenetial expansions that would cause a separation at the
interfaces. For this program the pistons consisted of a stack
of two pieces, pyrolytic graphite in "c" direction at 0.254 cm
thick, and CS graphite at 0.508 cm thick.
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The specimen was built up on the calorimeter tube and guards
packed with thermatomic carbon were used above and below the
specimen to retard longitudinal heat flow. Graphite felt
insulation was used between the specimen and guards. The top
guard section contained graphite sight tubes which align with the
temperature wells in the specimen and provided access from out-
side the furnace.

During the run the procedures were similar to those detailed
in the appendix.

Thermal conductivity was calculated from the measurements
of temperature difference and heat flow. The equation used is:

xk = AX Q_ (1)

where

k = thermal conductivity - W/mK

AX thickness of specimen - cm

A = area of gage section of one specimen strip
Q = total measured heat flow - watts
AT = temperature difference across specimen strip - K

A correction to the conductivity calculated in Equation 1
is necessary for this assembly. The measured conductivity will
be erroneously high due to the heat transferred through the
corners packed with thermatomic carbon. The correction required
has been determined analytically for the geometry of the assembly
by dividing the configuration into several radial segments and
assuming the temperature distribution in the thermatomic carbon
is the same as in the specimen and surrounding strips. This
analysis yields:
ks 1 -0.19% (2)
km Km

kg = true thermal conductivity of the specimen
kp = measured thermal conductivity of the specimen

ko = thermal'conductivity of the packing in the corners

13



As observed in Equation 2 the lower the measured conductivity
the greater the bias. For these runs the maximum bias was 19
percent.

The uncertainty of the values measured in the radial inflow
apparatus can be derived from the summation of the following
random uncertainties:

l. Errors associated with the basic equipment that have
been set at t7 percent. This includes the uncertainties
involved in temperature measurement, heat flow measure-
ment and other factors as discussed in the appendix.

2. Error in the analytical correction of the measured data.
The error involved here is certainly no more than #50
percent of the correction. With the maximum correction
being *19 percent the maximum error would be 9 percent.

The combination of the above uncertainties yield a total
error for the modified radial inflow system of *12 percent.

Impregnant Removal from Conductivity Specimens - As part
of the procedures for all the conductivity runs where impregnated
specimens were employed, the system with specimen was assembled
and prior to the measurement of data was baked at above 670 K
to remove the impregnant from the specimen.

Heat Capacity

The heat capacity of both the virgin and charred materials
were performed in both the adiabatic and ice calorimeter. The
adiabatic calorimeter was employed to 800 K and the ice calori-
meter from 800 K to 1730 K. Both apparatuses are described
fully in Appendices D and E.

A major problem with these materials, particularly that of
the chars, is the very low mass times heat capacity product
(mCp) due to the low density of the material. With a low mCp, the
signal is, of course, very low and the measurement is subject to
a lack of precision.

To minimize this problem, the chars were pulverized and
packed within an aluminum container for the determinations in
the adiabatic calorimeter. The pulverization increased the mCp
product sufficiently and the additional mCp of the container
remained a very small percentage of total signal; therefore,
the correction for the mCp of the container was small. These
conditions provided the precision normally obtained with this
apparatus.
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For the determinations using the ice calorimeter, the low
density char was pulverized and packed within our normal
graphite container. Unfortunately, the mCp product of the
container was a significant percentage (about 50 percent) of
the total signal. Since the correction for the container was
significant, the heat capacity of the cups employed for the
measurements were confirmed with several determinations over
the temperature range of interest.

Permeability

All permeability measurements for this program were made
with the high temperature permeability apparatus which is
described in Appendix F. The low temperature measurements were
made in this apparatus because it measures total pressure and
is probably better for the high flow rates expected with these
chars.

The diameter of all specimens was approximately 2.54 cm,
but the thickness varied from 0.630 cm to 1.827 cm., Silicone
rubber (Dow Corning RTV-731 Silastic) was used as the sealant
for all of the char specimens which were run only at room
temperature. The furnace char specimens run at elevated
temperatures were sealed in the fixture with Sauereisen 32
cement.

A piece of wire screen was placed on the downstream side
of the 1100, 1300 and 1700 K specimens before they were sealed
in the fixture. This was done to prevent the specimens'
destruction by the differential pressure across it. A cali-
bration curve was obtained for the screen wire giving pressure
drop as a function of gas flow rate. This correction was applied
to the pressure drop measured across the permeability specimens
which were backed with screen wire. The 600 and 800 K specimens
were sufficiently strong that this was not necessary. Figure 9
shows a typical specimen assembly. One specimen of the chars
formed at 600, 800, 1100, 1300 and 1700 K was run at room
temperature using nitrogen and helium as the permeating gases.
An additional specimen of the 1100, 1300 and 1700 K chars was
run at 800 K using nitrogen and helium as the permeating gases.
All specimens which were run at elevated temperatures were run
at room temperature before and after the high-temperature
measurements. This assisted in ascertaining if any physical
change in the specimen occurred during the measurements at
elevated temperature. The 600 and 800 K chars were capable of
being machined without impregnation. However, because of the




fragile nature of the other chars, the 1100, 1300 and 1700 K
specimens were machined by hand. The 600 and 800 K specimens
were sealed directly into the specimen holder and allowed to
cure. However, a wire screen was placed behind each of the
1100, 1300 and 1700 K specimens before they were sealed in the
specimen holder. The specimen assembly was then sealed in the
specimen holder and allowed to cure.

Porosity
The porosity of the chars was determined by calculation

from measured values of bulk and true density in accordance
with the following equation:

p=1-"Pp 100 (3)
Pe
where
P = total porosity in percent by volume

°b = bulk density

Pt = true density

The bulk density was measured by machining a specimen to
a definite geometry from which volume and weight were accurately
measured.

The true density was determined using a liquid pycnometer
in accordance with ASTM 135-66. The sample was pulverized and
passed through a 100 mesh screen to assure that all particles
were free of voids. The wetting agent used was methanol and a
25 ml pycnometer bulb was used primarily.

On some of the samples, complete wetting was not obtained
as evidenced by some (less than 2 percent) particle floatation
in the bulb. Apparently, the pulverization and passage through
a 100 mesh screen did not remove all of the porosity. The small
amount of particle floatation was removed from the bulb and
weighed to adjust the results to a corrected value of true
density. This correction was less than 5 percent.
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Tension

All of the tensile evaluations were made in a Tinius-Olsen
Universal Testing Machine at 294 K. Strain gage extensometers
were utilized to measure strain over a 5.08 cm gage length. Two
specimens were tested in each direction (a and b). Figure 10
shows the tensile specimen configuration. A schematic of the
load train is shown in Figure 1l. Strain gage extensometers were
calibrated over a 0 to 0.305 cm range with 0.020 cm/cm chart
calibration, and this calibration was linear within 1.0 percent
over the full scale. Load was calibrated to 1 percent accuracy.
The specimens had aluminum pads epoxied to each side of each
end. These pads provided load transfer to the gage section and
support at the pin holes. Chain segments were used in the load
train to assure uniaxial alignment.

Compression

All of the compressive evaluations were made in a Tinius-
Olsen Universal Testing Machine at 294 K. Strain gage exten-
someters were used to measure strain over a 5.08 cm gage length.
Figure 12 shows the compressive specimen configuration. Two
specimens were evaluated in each direction (a and b). The
extensometers were calibrated over a 0 to 0.305 cm range with
0.020 cm/cm chart calibration, and this calibration was linear
within 1.0 percent over the full scale. Load was calibrated to
1 percent accuracy. The specimens were tested in a special
loading fixture to provide uniaxial alignment and avoid specimen
buckling. A schematic of the load fixture is shown in Figure 13,

RESULTS OF VIRGIN MATERIAL EVALUATION
Thermal Conductivity

The thermal conductivity from 110 K to 500 K in the "c¢"
or thickness direction of the panel was measured in 1 atmosphere
of nitrogen. The data are shown in Figure 14 and Table 2. As
seen in the figure, the values increased from 0.045 W/m K at 120
K, reached a maximum value of 0.053 at 425 K, The data for both
specimens agreed rather well except for some scatter at 200 K.

The comparative values for Material A [1l] were plotted on
Figure 14 as a dashed line. From 120 K to 350 K the conductivity
values of Material A were about 12 percent higher than those for
Material B. The values then diverged so that at 500 K the
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conductivity of Material A was 50 percent higher than that
of Material B.

There was a significant difference in the character of the
two curves. Whereas the conductivity curve for Material A
exhibited a marked increase above 297 K, the curve for Material
B increased gradually to its peak at 425 K then decreased
slightly from 425 K to 500 K. The decreasing character of the
conductivity of Material B above 425 K was expected due to the
initial degradation of the composite. The honeycomb reinforce-
ment in Material A was an influence since it provided a more
continuous shunt of heat flow and would yield the higher values
and increasing character of conductivity observed.

Heat Capacity

Enthalpy and heat capacity from 120 K to 490 K were
determined. The values of enthalpy and heat capac1ty are
shown in Figure 15 and Table 3.

The heat capacity increased from 0.5 J/g K at 120 K to
1.7 J/g K at 490 K. These values were about 10 percent lower
than those measured on Material A.

Attempts to determine the enthalpy at temperatures higher
than 500 K resulted in values that were biased high. Obser-
vations of the thermal response of the specimen within the furnace
indicated that at slightly higher temperatures an exothermic
reaction initiates which would obviously alter the measure-
ment of enthalpy.

Tension

The results of the tensile evaluations are shown in
Table 4 and the stress-strain curves are included as Figures
16 through 19.

In the "a" direction, ultimate strengths for spec1mens
T-la-2B and T-2a-2B were 48.27 x 103 N/m? and 34. 48 X lO N/m?,
respect1vel¥ and elastic modulii were 8825.6 x 10° N/m? and
7032.9 x 10° N/m?, respectlvely. In the "b" direction, ulti-
mate strengths for spec1mens T-1b-2B and T-2b-2B were 42.75 x
10° N/m? and 32.41 x 10 N/m?, respectlvely and elastic modulii
were 6343.4 x 10° N/m? and 7032.9 x 10%® N/m?, respectively. A
typical tensile fracture is shown in Figure 20.
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Material B did not exhibit the anisotropic behavior in
tension found in Material A. The ultimate strength of
Material B was about one-fourth to one-eighth that of Material
A while the elastic modulus of Material B was one-half to one-
fourth that of Material A. Again the influence of the honey-
comb reinforcement of Material A would increase the strength
and anisotropy. '

Compression

The results of the compressive evaluations are shown in
Table 5 and the stress-strain curves are included as Figures
21 through 24,

In the "a" direction, ultimate strengths for specimens
C-la-2B and C-2a-2B were 184.09 x 10° N/m? and 200.64 x 10°
N/m?, respectively and elastic modulii were 9928.8 x 10° N/m?
and 10135,7 x 10°N/m?, respectively.

In the "b" direction, ultimate strengths for specimens
C-1b-2B and C-2b-2B were 208,92 x 10° N/m’ and 162.72 x 10°2
N/m?, respectively and elastic modulii were 13238.4 x 10° N/m?2
and 10963.1 x 10° N/m?, respectively. A typical compressive
fracture is shown in Figure 25.

Material B did not exhibit the anisotropic behavior in
compression found in Material A. The ultimate strength of
Material B was about one-half to one-third that of Material A
while the elastic modulus of Material B was one-half to one-
fourth that of Material A.

CHAR PREPARATION IN THE LABORATORY FURNACE
Criteria

To conduct a meaningful evaluation of the thermal
properties of a char formed during re-entry, one must be
able to prepare suitable specimens from the char. Obviously,
these specimens must be stable, compatible with the environ-
ment and other conditions of the test and be representative
of the char formed during flight. 1In addition, to characterize
a char formed at specific temperatures, the char specimen
must be prepared under isothermal conditions.
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Of course, the best simulation of a flight char is one
that is made under a high enthalpy arc-jet stream; however,
the chars prepared in an arc-jet are normally not practical
for use as a specimen. This is due to a large temperature
gradient that exists during char formation. Therefore, the
chars were prepared in a furnace under this program, and the
conditions of charring were selected to provide the best
representation of the flight char.

To best meet the criteria of char preparation, an
initial evaluation of optimum procedures was conducted, the
first step of which was a study of the arc-jet chars prepared
by NASA. It was assumed that they represented flight chars.

Arc-Jet Char Description

Two samples of char formed in the arc-jet were received
for our inspection and formed a baseline for comparison of
the furnace chars at various conditions.

The arc-jet specimens for Material B were prepared in the
same manner as those for Material A. The arc-jet specimens
were prepared by mounting the block on a wedge and the hot gases
impinged the surface at an angle under a constant heating rate
cycle of 20 minutes. The cold wall heat flux was monitored from
the leading edge to the back edge. At the midpoint, the cold
wall heat flux density was 18.2 x 10" W/m? (16 Btu/ft’? sec). The
variation in heat flux density was linear and it ranged from
30.1 x 10* W/m? (26.5 Btu/ft? sec) at the leading edge to 7.26 x
10* W/m? (6.4 Btu/ft? sec) at the trailing edge. Assuming only
radiation heat loss from the sample and an emittance of 0.6
(probably low), the maximum equilibrium temperature of the crust
on the arc-jet was calculated to be 1728 K or 2650°F. Therefore,
the maximum charring temperature used in this program was about
1730 K.

A photograph of Arc-Jet-B-1 as received from NASA is shown
in Figure 26. Arc-Jet-B-2 is shown in Figure 27. A visual
inspection of Arc-Jet-B-2 and a discussion with the technical
monitor of NASA resulted in the conclusion that this sample had
been subjected to excessive oxidation and was unsuitable as a
standard of comparison. The crust of Arc-Jet-B-2 was cracked
and completely separated from the remainder of the sample. The
outer surface of the crust had a dark yellow-green coloring.
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Arc-Jet-B-1 had a crust with a light-burgundy coloration on
its outer surface. There were areas where the firm crust had been
eroded away possibly by oxidation and/or the action of the arc-
jet. The fibers on the surface were glazed and appeared darker
than the surrounding material. Immediately beneath the crust
was a grey powdery area in which the fibers were quite fragile.
Beneath this was a darker area which was hard and brittle and
tended to granulate when scraped with a sharp blade. The color-
ation of this zone was unique in that the upper portion of the
zone was dark brownish while the lower portion was dark grey.
The fibers in this zone were almost indiscernible. The next
zone was black and somewhat powdery with dark, brittle fibers.
The next zone was dark grey and very powdery with light-colored,
pliable fibers. The bottom zone was spongy and somewhat darker
than the virgin material.

There were no pronounced cracks in Arc-Jet-B-l. There were
several small random cracks within 1/2 inch of the heated surface,
but there were no cracks on the surface itself. Since this material
was not reinforced with a honeycomb, this macroscopic structure of
the char was quite different than that of Material A. As related
in NASA CR 132281 [1], Material A had several major separations
and gaps due to the shrinkage of the elastomeric composite from the
honeycomb wall. Therefore, the char (furnace or arc-jet) of
Material B, was more homogenious than that of Material A since it
consisted of a more even distribution of porosity and cracks.

Suitable Monitors

To properly conduct the initial evaluation of optimum
char preparation in the furnace, suitable monitors and inspec-
tion procedures were necessary. The evaluation and selection
of the best inspection procedures were thoroughly reviewed under
CR 132281 [l1l] concerning the evaluation of Material A. Due to
the similarities of these two materials, the optimum inspection
techniques developed for Material A were used here.

The best inspection procedure appeared to be the examina-
tion of the chars' gross physical structure. Consideration was
given to parameters such as density, color, texture and
appearance of the fibers. The manner in which the chars reacted
to scraping with a sharp blade or crushing were also considered.
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The use of the 10X to 20X stereo microscope assisted in the
visual inspection. The specimens were viewed in a natural state
without preparation such as polishing and impregnation. This
permitted observation and comparison of the structure, color of
the beads and fibers in the various chars.

As was the case for Material A, the temperatures of char
formation for Material B were too low to permit any use of the
monitors which quantitized degree of graphitization or ordering
of the crystallites. These were very effective monitors under
a previous program performed under Contract NAS1-10517 [3].

Some X-ray diffraction tests were run and no ordered carbon was
detected. The results of the X~ray diffraction measurements
presented later did indicate the presence of alpha cristobalite
which was obviously from the glass present in the virgin material.
The technique used in preparing the X-ray diffraction samples

was not controlled, therefore the results of these analyses could
not be compared precisely. However, these results were used to
make general comparisons.

Preliminary Char Preparation and Selection of Charring Conditions

Two methods were attempted to provide representative chars
prepared in the furnace. These methods are referred to as:

l) Rapid one-dimensional (R1D)
2) Rapid two-dimensional (R2D)

The term rapid refers to the chars formed by a rapid heating
rate which was obtained by immersion into a furnace preheated to
the desired temperature. Typical temperature versus time curves
for the surface and internally at depths of 1.27 and 2.54 cm
(on the 5.08 cm thick char blanks) from the heated surface are
included in Figure 28.

One-dimensional and two-dimensional indicated the appli-
cation of heat to the specimen. The one-dimensional chars were
prepared by allowing exposure of only one surface to the radiant
heat from the heater tube. This was done by using the assembly
discussed under "Apparatuses and Procedures" section but two
specimens were installed back-to-back with a piece of graphite
felt inserted between them. This provided an insulated back
face boundary condition and allowed one-dimensional heating to
occur.,




The two-dimensional heating allowed radiant heating to both
surfaces of a specimen as discussed under the "Apparatuses and
Procedures"”" section.

Table 6 summarizes all the char blanks prepared during the
preliminary investigation. The table includes various measure-
ments made to characterize and compare the blanks made. Some of
the same measurements were made on the arc-jet specimens for a
basis of comparison.

The rapid one-dimensional chars warped severely, rendering
them unsuitable for specimen preparation. This method was,
therefore, not pursued and the rapid two-dimensional charring was
studied in more detail and finally selected. Preparation of
samples under 2.54 cm produced chars unsuitable for evaluation;
however, thicker samples formed sufficiently thick charred areas
near the surfaces. These charred areas proved to be representa-
tive of the flight chars. The sample thickness of 5 cm was used.
The visual appearance of these two-dimensional chars was quite
similar to the arc-jet char except for the crust (1700 K char).
The 1700 K furnace char was a dark grey color whereas the arc-
jet char was light grey, possibly resulting from oxidation.

The effect of residence time (time-at-temperature) was
examined with three char blanks (CB-35-1B, CB-34-1B and CB-20-
1B), all of which were 1700 K chars. Char blank CB-34-1B was
held at temperature for one second, CB-35-1B was held for 25
seconds and CB-20-1B for 18-1/2 minutes. Visual inspection and
X-ray diffraction showed chars CB-34-1B and CB-35-1B to be the
same and they compared favorably with the arc-jet chars. However,
X-ray diffraction revealed that very little alpha cristobalite
remained in char CB-20-1B and visual inspection revealed that
the interior was grey intermingled with white areas which was
unlike that of the arc-jet char. A hard crust about 10 mils
thick had formed on the surface, but thoughout the rest of the
char, the material was soft and spongy.

The above study led to the selection of the rapid two-dimen-
sional (R2D) heating to process the charred specimens.

All the chars prepared for evaluation under this program
were done under the (R2D) conditions with the exception of the
600 K thermal conductivity char. Here the 8.26 cm diameter
guarded hot plate was employed for the conductivity measurement
and two discs shown in Figure 6 were employed. To accommodate
this configuration, a chamber was constructed which enclosed the
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specimens and the chamber was purged with helium and installed
within a laboratory oven. The heating cycle consisted of heat-
ing the material to 590 K in 90 minutes, holding it at constant
temperature for 30 minutes and allowing it to cool within the
oven after power shut down.

The R2D chars were prepared, as discussed previously in
the Apparatuses and Procedures section, by immersing a 3.81
X 7.62 x 5,08 cm thick char blank, insulated around the edges,
within the preheated furnace and holding it for about 30 seconds
after thermal equilibrium was established. The 1300 K and 1700 K
chars were impregnated with Amoco resin 18-210; however, it was
possible to make specimens from the other chars without impregna-
tion. Specimens were taken from each half of the char, as close
to the heated surface as possible, since the central region was
of poor structure and not representative of the arc-jet char.
Since these chars were two inches thick, it was rather easy to
avoid this central area. Therefore, as far as the specimen was
concerned, the formation of char during preparation progressed
from one surface to the other rather than a progression from
both surfaces into the center.

Typical temperature versus time plots for the furnace chars
employed for evaluation are shown in Figure 28.

Table 7 is a summary of all the char blanks prepared and the
specimens extracted from them. Included in the table are various
physical measurements made prior to and after the cycle.

DATA AND RESULTS
Thermal Conductivity

Thermal conductivity curves are included in Figures 32
through 36. The curves for Material A are also included in
these figures. Tables 8 through 14 include the thermal con-
ductivity data.

The thermal conductivity of each char was determined at
mean temperatures up to just below the charring value since the
hot face temperature of the specimen was not allowed to exceed
the prechar temperature. To determine the thermal conductivity
at the charring temperature, the curve was extrapolated a small
amount. The thermal conductivity values of the virgin material
and all of the chars were plotted versus charring temperature
in Figure 37.
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Since there were no major separations or cracks in this
material to provide gross anomalies in the structure, such as
there were for Material A, the value measured was an effective
conductivity of the composite and needed no adjustments to
account for major anomalies.

For some of the evaluations, the data scatter was high
since this material was not conducive to conducting precise
thermal conductivity evaluations. Intimate interfacial contact
necessary for precise measurement was not possible due to the
porous nature of the material as well as the glass fibers that
protruded from the surfaces. Due to the flexibility of the
glass fibers, machining the surfaces did not cut the fibers
flush with the surface; therefore, leaving the surface with a
brush like texture primarily for the 600 K and 800 K chars.

Another problem involved a deterioration of the surfaces
on a 1300 K char specimen during the run in the comparative rod
apparatus. This was noticed during the disassembly of the compa-
rative rod apparatus after the run. Even though the run was
performed in an inert atmosphere obtained within two vacuum
cycles and back-filling with nitrogen, the combination of silica
and carbon can (as we have observed previously) oxidize the carbon.
This apparently occured in varying degrees for the 1300 and 1700 K
char specimens.

Since a residence time of about 20 minutes seemed to affect
the structure of the 1700 K chars, (as discussed before) X-ray
diffraction analysis was performed on several thermal conduc-
tivity specimens in an attempt to see if the material was
altered during the run. One guarded comparative rod specimen
and one radial inflow specimen of the 1300 K and 1700 K chars
were examined after being run and compared with char blanks
which had been prepared under the same conditions as those from
which the specimens were removed. A comparison of the alpha
cristobalite content gave no indication of a change in the 1300 K
specimen due to the additional exposure to temperature during the
run. However, there was an indication of a possible decrease in
alpha cristobalite content of the 1700 K guarded comparative rod
specimen and a definite decrease in alpha cristobalite content in
the 1700 K radial inflow specimen.

Thus, the results of the post mortem examination of the
1700 K radial inflow specimen indicates that some material in the
1700 K char was not "frozen" upon initial exposure to temperature.
Subsequent exposure to temperatures up to the charring temperature
caused some alteration in the 1700 K char.
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With the above problems inherent with this material, it must
be emphasized that the thermal conductivity data are approximate
and will only serve to provide trends and general characteriza-
tion of the material's conductivity during degradation.

Referring to Figure 37, the boxed values of thermal
conductivity were fairly consistent with those measured on
the virgin material. The curve increased gradually from 0.045
W/m K at 100 K to 0.093 W/m K at 810 K. Between 810 K and 1365 K
the slope of the curve increased and was extrapolated between
1365 K and 1730 K resulting in a value of 0. 680 W/m K at 1730 K.
The curve for the data measured at 49,329 N/m? (370 torr) had a
similar character, being about 5 percent below the atmospheric
curve. The data taken at 1333 N/m? (10 torr) fell between 21
percent and 44 percent below the atmospheric curve.

Visual comparison of the arc-jet and furnace chars and post
mortem X-ray diffraction analyses suggested that we were unable
to model the arc-jet crust exactly. Therefore, the thermal
conductivity curves in Figure 37 were extrapolated from 1370 K
to 1730 K as was done for Material A. It was believed that this
gave a more realistic value of the thermal conductivity of the
crust.

In comparison with Material A, the values for Material B
were generally lower. This would be expected since Material A
contained the honeycomb reinforcement which did provide a more
continuous path for heat flow.

Porosity

The porosity of the charred material was calculated from the
bulk and true densities. Some true density measurements were also
made on the arc-jet char.

Figure 38 and Table 16 report the bulk densities measured
Versus char formation temperature. The values decreased from 0.255
gm/cm® at 300 K (virgin material) to a minimum of 0.18 gn/cm?® at
810 K. Between 810 K and 1370 K the bulk den51ty increased to 0.222
gm/cm® but decreased slightly to 0.202 gm/cm® at 1740 K.

The minimum bulk density occurring at 810 K is attributed
to the material's high initial weight loss (outgassing of volatiles)
and low shrinkage. The effect of char temperature on char blank
shrinkage is evident in Figure 30.
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The true density is shown in Figure 39 and Table 17. There
was general agreement between the true density of the arc-jet
and furnace chars except at 810 K where the value for the arc-
jet was 23 percent higher.

The porosity is shown in Figure 40 and Table 18. The values
increased from 83 percent at 600 K to 87 percent at 810 K and
remained fairly constant (2 percent variation) above that tempera-
ture. This value was as expected and was slightly below that of
Material A which contained more major cracks and separations.

Heat Capacity

The enthalpy and heat capacity data are shown in Figures 41
through 44 and Tables 19 through 25. The heat capacity curves
for Material A are plotted as a dashed line on these figures.

As was found with the previously tested Material A, the enthalpy
did decrease in magnitude with increasing temperature of char
formation.

A boxing analysis was performed to predict the heat capacity
of Material B during degradation. The results of this analysis
is shown in Figure 45 along with the curve for Material A. Below
500 K the values shown are those measured on the virgin material.
Above 500 K initial degradation occurs and when the charring
temperature reaches 810 K a weight loss of about 37 percent occurs
indicating the complete loss of all volatiles in the virgin
material. There is a slight decrease in heat capacity during
initial degradation up to 810 K. From 810 K to 1100 K, the heat
capacity increases to its maximum value of 2.55 J/gK. The
percentage weight loss reaches its maximum of 42 percent at 1100 K.
Since the weight loss between 810 K and 1100 K is only about five
percent, the increase in heat capacity represents normal behavior
for a stable material. Between 1100 K and 1370 K there was only
a slight decrease in weight loss but the heat capacity decreased
indicating a variation in material composition. Between 1370 K
and 1739 K the heat capacity remains almost constant, indicating
stabilization of the material.

The heat capacity curve for Material A exhibits the same
general character as that for Material B up to 830 K, with the
two curves varying no more than 15%,
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Permeability

The permeability was determined on all the furnace chars
prepared at the five charring temperatures. The values were
measured at room temperature on all the chars while measure-
ments at elevated temperatures were made on the 800 K, 1100 K,
1300 K and 1700 K furnace chars. The intent of the permeability
measurements was to predict the pressure gradient through the
thickness of the flight char as it was formed.

The permeability coefficients were derived from the Cornell
and Katz plots shown in Figures 46 through 50. The calculations
required for the Cornell and Katz plot are shown in Tables 26
through 30.

The data for the two 600 K permeability specimens showed
good agreement, but the room temperature data for the two
specimens from the 800 K, 1100 K, 1300 K and 1700 K chars did
not agree. There did not appear to be a correlation between this
variation and the densities of the duplicate specimens.

The trend of the Cornell and Katz plots for the 800 K, 1100 K,
1300 K and 1700 K specimens at the various run temperatures was
unexpected. The viscous flow coefficient, o, decreased from the
room temperature run to the 811 K run on the 800 K, 1100 K and
1300 K specimen as expected. However, for the 1700 K specimen the
viscous flow coefficient was higher for the 811 K run than for
the room temperature run. The value of a for the room temperature
return on the 800 K specimen was higher than that for the 811 X run
but lower than the original room temperature run. For the 1100 K
and 1300 K chars, o was higher on room temperature return than on
the initial room temperature run. The room temperature return run
for the 1700 K char was inconclusive since the helium and nitrogen
data did not agree. The data points were plotted in Figure 50
but no curve was drawn.

The values of R, the inertial coefficient were also unusual.
In several instances the value of B was zero (see Table 31),
indicating purely viscous flow.

It appeared that the reason for the inconsistency of the
permeability data on the furnace chars of Material B was the
fragile nature of the chars. The pressure gradient across the
specimen, the temperature to which the specimen was exposed and
the flow of gas through the specimen could have combined to produce
unpredictable changes in the flow of the permeating gas, especially
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since there was no reinforcement within the material itself.
That Material A had a reinforcing honeycomb was probably the
main reason for its more consistent permeability coefficients.,
The major portion of the flow in Material A was in the cracks
between the honeycomb and filler material. Material B had no
one such obvious path of low resistance to the flow of the
permeating gas.

The room temperature Cornell and Katz plot for Material A
is shown on each of Figures 47 through 50. The plot for the
600 K char of Material A is not shown since it would be off
scale. The plots for the 800, 1100 and 1300 K chars show that
Material A was more permeable than Material B. This was
probably due to the cracks between the filler and reinforcement
of Material A. The plot for the 1700 K char shows that Material
A was less permeable than Material B. This was possibly due to
the thickness of the specimen as well as the variability in the
crust formed on the two materials.

Conclusions

This study has characterized Material B in both the virgin
and charred states. The data have revealed the typical progres-
sion of various thermal and physical properties that will occur
during the process of ablation upon re-entry.

The degradation of the virgin material seems to initiate at
about 500 K as was observed with the apparent exothermic reaction
that occurred above 500 K with the heat capacity specimens and the
decrease in thermal conductivity at 500 K. A summary of the pro-
perties measured on Material B by the boxing technique is given in
Figure 51.

The weight loss history and bulk density profile indicate
that all degradation and volatilization occurs between 500 K and
800 K. The maximum weight loss and the greatest decrease in bulk
density occur between 600 K and 800 K.

Between 800 K and 1100 K carbonization of the material is
indicated by a significant increase in thermal conductivity and
true density. Heat capacity also increases appreciably in this
temperature range. Between 1100 K and 1740 K the thermal con-
ductivity continues to increase, although above 1365 K the increase
is not as rapid. Above 1100 K the true density values are fairly
constant and the heat capacity values decrease to a constant value
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between 1100 K and 1365 K. Although‘carbonization is apparent,
X-ray diffraction analyses showed that the charring temperatures
used in this program did not produce any ordered carbon.

The permeability values, although not precise, should serve
as an order-of-magnitude estimate of the values for the degrading
system.

The variation in behavior and properties between Material
A and B are mainly due to the influence that the honeycomb
reinforcement has on the elastomeric composite. The thermal
conductivities are higher in Material A, virgin and char, due to
the continuous conduction path provided by the honeycomb wall.
The heat capacities were similar with Material A being slightly
higher in the virgin state. The strengths were higher for the
virgin Material A again due to the continuous reinforcement

provided by the honeycomb structure.

The structures of the two materials in the charred states
were physically different due to the influence of the honey-
comb reinforcement. The rigid honeycomb and shrinking elasto-
meric composite in Material A allowed gross separations and
cracks to develop, which obviously increased the permeability
porosity and effective thermal conductivity (radiant shine
through) over that of the more homogeneous structure of Material
B. A crust formed on both materials but the crust on Material
A seemed firmer and was well supported by the honeycomb structure.
The mechanical integrity of the charred Material A seemed better
due to the firmer crust and honeycomb confinement.
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1. One specimen 3.81 cm wide x 7.62 cm long x 5.08 cm

2. Specimen is inserted in heater tube with 7.5 cm diameter

3. Temperature measured through sight port in furnace by
sighting at center of specimen

Figure 5. Photograph of Specimen Holder for Preparing Char
Samples Shown With Virgin Specimen Installed
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Specimen
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Backed

with One Piece
of Wire Screen

Z

Figure 9.

\\FSPecimen Holder

Typical Permeability Specimen Build-Up
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Schematic of Tensile Load Train Assembly.
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Figure 14. Thermal Conductivity of a Low-Density Elastomeric

Ablation Material (Material B) in 1 Atmosphere of
Dry Nitrogen.
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Figure 20. Typical Fracture for Tensile Specimen
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Figure 25. Typical Fracture for Compressive Specimen
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Formed at 798 K
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Figure 46. The Permeability of the Furnace Char of Material B
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Figure 47. The Permeability of the Furnace Char of Material B
Formed at 800 K
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TABLE 1

COLD WALL HEAT FLUX
OF FURNACE CHARS

Furnace Preheat Approximate Cold
Temperature Wall Heat Flux
K W/m-K
600 0.6 x 10?
800 17.0 x 10°
1100 65.0 x 10°
1370 160.0 x 10°
1730 400.0 x 103

Note:

Cold wall heat fluxes are for immersion of specimen
within preheated furnace. Emittance of surface
assumed at 0.8.
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TABLE 6

SUMMARY OF CHAR BLANKS PREPARED DURING THE PRELIMINARY INVBSTIGATIONS

Shrink- X-ray
Total Maxium Virgin age in Char? Change Diffraction
Temper=- Time in Temper— Specimen Thick~ Bulk Weight Thick~ Bulk in Bulk Intensities
ature Furnace ature Bhnkl ness D-nlity Loss ness D.n-it‘y Density t
Category Seconds X cm qm/cm* 3 L] gm/cm 8 =4 . d=2.485
800K 780 827 CB- 4-1B- 827 2.54 0.2588 40.23 16.30 0.1785 31.02
{R2D)
1200 807 CB-14-1B- 807 2.54 0.2602 43.93 12.42 0.1742 33.95
(rR2D)
1100K 375 1131 CB- 3-1B-1131 2.54 0.2600 42,34 21.92 0.2215 14.80
(R2D)
420 110 CB-17-1B-1101 5.08 0.2549 41.86 11.47 0.1750 31.34
R2D)
1200 1109 CB-19-15;110? 2.54 0.2755 45,01 21.86 0.2217 20.39
R2D
600 1164 CB-39-1B-1164 5.08 0.2446 42.67 15.08 0.2011 17.78
(R2D)
1370x 260 1344 CB~ -13-546 2.54 0.2586 37.33 13.91 0.2047 20.84
270 1373 CB- 6-152127? 1.27 0.2562 41.48 22.00 0.2213 13.62
270 1373 CB- 7~ 1!2137)3 0.64 0.2534 43.62 25.37 0.2285 9.82
R1D
270 1328 CB-10-1321132? 1.27 0.2576 43.87 14.78 0.1898 26.31
270 1326 ca-u-u-(ns? 0.64 0.2529 46.03 20.54 0.2355 11.62
R2D
420 1372 CB-18-1B-1372 5.08 0.2475 40.31 14.91 0.1980 20.00
R2D)
1200 1371 CB-21-1B-1371 2.54 0.2551 39.79 14.03 0.1975 22.57
R2D)
1200 1381 CB-22-1B-1381 2.54 0.2619 42.75 12.65 0.1860 28.98
(R2D)
1730K 180 1724 CB~ 1-1!-172: 2.54 0.2608 34.08 11.57 0.2054 21.24 6100 900
150 1673 -1B-1$73 1.27 0.2514 38.60 15.67 0.1993 20.72
1D)
210 1673 CB~ 9-15—1673 0.64 0.2485 41.48 21.57 0.1976 20.48
(R1D)
1350 1719 CB~12-1B-171% 1.27 0.248% 37.78 17.81 0.2043 17.78
(R2D)
150 1719 CB-13-1B-171% 0.64 0.2475 44.93 18.18 0.1812 26.78
R2D
Tran- 1728 CB-15-1B~1725 5.08 0.2530 26.94 5.00 0.2013 20.43
sient R2D)
420 ‘1732 CB-16-18-173§ 5.08 0.2652 37.54 5.47 0.1856 30.01 4000 55¢
R2D,
1200 1735 CB—ZQ—IB?173§ 2,54 0.2485 53.89 12.79 0.1429 42.49 500 900
2
20 1716 €B-34- 13(1716 2.54 0.2628 33.14 14.72 0.2196 16.43 4300 500
: D)
120 1730 CB-35-. 15-1730 2.54 0.2676 34.58 10.92 0.2105 21.33 4500 700
R2D)
120 1730 CB-37-1B-1730 5.08 0.2655 34.20 9.20 0.2034 23.42 4800 700
(R2D)
1900k 180 1932 CB-24-132193';‘ 2.54 0.2591 43.40 11.14 0.1742 32.76 Slight 800
R2D
2100K 240 2089 CB-25-1B-2089 2.54 0.2567 59.30 7.78 $.1167 54.53 slight 2200
{R2D})
Arc Zone 13
Jet AJ-B-1 0.219 9100 1300
Char
zone 13
AJ~B-2 11200 1400
Zone 23
AJ-B-2 7300 1000
Zone 25
AJ-B-1 0.256
J'Specimen number contains designation R1D, R2D which infer the following:
RLD - Rapid heating rate, i a a fi at desired temperature. One dimensional heating

in
R2D - Same as R1D except two-dimensional heathq

2pulx density of char measured approximately on entire block after extraction from the furnace

3D1agr|m of Arc Jet Char with Zones 1 through 5 indicated

/— Heated Surface

Zone 1
Zone 2
Zone 3 2.38 cm
Zone 4§ 1.85 em
2.74 om
Zone 5 (1] BI cm
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TABLE 12

THERMAL CONDUCTIVITY OF THE FURNACE CHAR OF MATERIAL B FORMED AT 1365K
MEASURED IN THE RADIAL INFLOW APPARATUS

Average
Outer Average Heat Flow Average Mean Thermal Environmental
Face AT of to p d ivity Pressure
Temperature Each Strip Calorimeter of Specimen " N ’
Time X K ___Watts K Bk R
Specimen No. on 204
RI~1C-CB-48, 52 7:30 213
& 53-38 -
Read 212
Run: 9:00 ——
7133-44-69-2-Gre Avg 210 13 841 0.130 1333
Initial Thickness| Read
0.354¢ eom 10:20 -
Avg 1334 266 40 1212 0.306 101325
248
263
Read 262
10:50 —_
Avg 131 258 40 1217 0.314 49329
249
257
Read 251 |
11:258 — |
Avg 1338 252 | 24 1224 0.187 1333
Specimen No. on 144
RI-2C-CB-53,64 10145 135
& 66-3B 134
Read 137
Runs 12:15 -_
7133-4-69-2-GPR Avg 137 13 843 0.202 101328
Initial Thickness 165
0.254¢ com 149
157
Final Thickness Read 159
0,346 o 2:30 —_—
Avg 1356 157 24 1276 0.306 101328
154
139
147
Read 149
3:00 —_—
Avg 1343 147 26 1269 0.353 49329
124
112
120
Read 126
3:28 —_—
Avg 1354 121 14 1286 0.241 1333
Specimen No. 204
RI-3c—CB~68 & 216
72-38 206
On 203
Run: 2:15 —_—
7133-54-69-2 Avg 207 15 789 0.146 1333
Initial Thickness 188
0.2354 o 203
196
192
3:30 —_—
Avg 194 21 [ 351 0.221 49329
195
204
197
192
4:45 —
Avg 197 22 809 0.229 101325
261
268
262
264
6:45 —_
Avg 264 | 27 1203 0.206 1333
259
268
257
257
8:0% —_
Avg 261 41 1223 0.320 49329
258
271
258
257
9315 —_
Avg 261 48 1239 0.372 101325

Note: Calculation of Thermal Conductivity
.-

K = thermal conductivity

where

4X = gpecimen thickness

Q = heat flow to 1.27 cm
calorimeter gage section

A = gage area of specimen
{total for 4 strips) = 11.5 cm?

AT = temparature drop across specimen
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TABLE 14

THERMAL CONDUCTIVITY OF THE FURNACE CHAR OF MATERIAL B FORMED AT 1729K
MEASURFD IN THE RADIAL INFLOW APPARATUS

Average
Outer Average Heat Flow Average Mean Thermal Environmental
Face AT of to Temperature [« ivity ),
Temperature Each strip Calorimeter of Specimen .
Time X 3 Watts |3 mk m?
Specimen No.: RI- on 126
1C-CB-55 & 56-3B 7:20 124
Read 123
Run: 8:15 122
7133-14-69-2-GFE Avg 124 1 802 0.171 1333
Initial Thickness 14
138
Final Thickness Read 137
8:40 136
Avg 138 16 807 0.209 101325
169
166
Read 167
9:15 163
Avg 1239 166 16 1169 0.177 1333
181
178
Read 177
9:50 174
Avg 1239 178 28 1163 0.290 101325
204
202
Read 202
11:30 198
Avg 1722 w7 48 1616 0.414 101325
194
200
Read 193
12:15 -
Avg 1711 156 41 1606 0.379 49328
101
Read 156
1:00 -
Avg 1722 168 27 1621 0.270 1333
Spacimen Na.: RI- on 137
2C~Ca-58,60,62-3B 7120 -
Read 150
33<28.60-2 s140 Y
28-63-2-GPE Avg 144 13 819 0.186 1333
Initial Thickness 152
Final Thickness Read 164
9:30 153
Avg 156 18 815 0.233 101325
179
Read 194
10:30 186
Avg 1222 187 20 1130 0.212 1333
197
Read 209
11:00 197
Avg 201 32 1127 0.310 101325
223
203
Read 226
12:16 219
Avg 1691 218 56 1568 0.492 101325
213
182
Read 203
12:45 200
Avg 1689 199 47 1586 0.454 49329
197
178
Read 184
1:25 189
Avg 1683 187 32 1556 0.320 1333

Note: Calculation of Thermal Conductivity

X

K = AT

where
= thermal conductivity
specimen thickness

= heat flow to 1.27 cm
calorimeter gage section

gage area of specimen

({total for 4 sctrips) = 11.5 cm

o k=
1

Ed
L]

rature drop across spscimen

AT = temperaiu
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TABLE 15

BOXING ANALYSIS OF THERMAL CONDUCTIVITY

Temperature Environmental Thermal
of Char Pressure Conductivity
Formation
K N/m? W/m K
600 101325 0.076
49329 0.075
1333 0.045
808 101325 0.096
49329 0.092
1333 0.078
1100 101325 0.197
49329 0.185
1333 0.127
1365 101325 0.343
49329 0.323
1333 0.201
1729 101325 0.507 (0.68)"
49329 0.461 (0.54)
1333 0.322 (0.38)

lyalues in parentheses extrapolated from trend
of data at lower temperatures since furnace
char at 1700; did not appear to represent
flight char crust.




-posn 30U 9I9M SUERTH IeYD JO I9JUSD IO 9I00 {90eJIns pojesy Jesu woiy paredead suawroads :930N

?S6T°0 82S€°0 0T1€"0 816°1T 8e0°€ SPLT zde-£9-9D0-2~0ad]
G20C°0 0TIC"0 2Ze9°1 v6G°0 T8G6°¢ Z€9°¢ SHLT 19€-€9-90-T-04
¢T102°0 8c0L"C S6%°0 8¥s°¢€ 0v9°L SELT g€ -6S-4D-T-0d]
9LET" O 009T"T oLv"0 6€£6°C 9€G6°¢€ C8ET Zd1-0v-90-C~Qd
€222°0 6£€C0 S626°0 8€6°0 cLTC €8€° € Z8€T T9T-0¥-€4O-T~-Adl
€86T°0 X AAANY 12570 STV T ves°T 99¢T cde-Ly-90-7 A4
L6TC"0 esPT" 0 LOE"O €8C°T PLO9°T 99¢T THE-LYy-4D-T-A9
S¥02°0 ZETIC"O0 GZ9%°¢ 869°0 8LE"E 08Z°L 860T a¢ -9y -d0-T-Aq|
8G6T°0 STOY ¥ £88°0 L9% € 06C°L €0TT g€-Gy-dO0-T-0d
008T°0 0z88°1 989°0 L6L ¢ €10° ¥ 808 d1-0¢€-d90-1-aq|
008T°0 LS8BT 0 S6LE°C S76°0 899°¢ 969°¢ Z18 g1-2€-40-¢-aqg
LT O 8T2Z°'1 $T6°0 81¢*0 0TS" € CT8 g€1-2€-90-T~A4
S6vC"0 TLET"O 8EVO0~L 667°C 6vv°¢ 9L~ € 009 d1-€2-90-1-0ad
0292°0 GEET"9 L89°T ZvoT¢e I8°¢€ 885 d471-6¢-90-T1-0d
uo /ub uo /b ub uo wo 5 3 *ON uduwroadg|
31susd wuﬂmawa 3ybToM SSaUMOTYL UIPIM yybuag aanjeaadusy],
JIng 3ing WOMTXER
abevasAy

M00LT O3 Y009 woxJ saanjexsduwd] 3t pauIog
g TeIIsleW JO sSIey) odeurnd Jo A3Tsusad YInd

9T STqel

97




98

TRUE DENSITY OF THE FURNACE
AND ARC-JET CHARS OF MATERIAL B

TABLE 17

Maxium

Temperature True

of Density

Formation at 299K
Specimen No. K gm/cm?
TD-CB-29-1B 588 1.49
TD-CB-32~1B 812 1.43
TD-CB-45-3B 1103 1.81
TD-CB-47-3B 1366 1.70
TD-CB-59-3B 1735 1.77
TD-1-Bl-AJ-5* - 1.57
TD-1-Bl-AJ-4 - 1.78
TD-1-Bl-AJ-3 - 1.80
TD-1-Bl-AJ-2 - 1.64
TD-1-Bl-AJ-1 - 2.40

* Diagram of Arc Jet Char with
Zones 1 through 5 indicated.

Zone 1
Zone 2
Zone 3 3.35cm
T 2.74cm
2.38cm
Zone 1.85cm
Zone 0.%fcm1 ’




TABLE 18

TOTAL POROSITY OF THE FURNACE CHARS
OF MATERIAL B

Temperature
of Char True Bulk Total
Formation Densitg Densitg Porosity
K gm/cm gm/cm %
600 1.49 0.2495 83
812 1.43 0.1800 87
1103 1.81 0.2045 89
1366 1.70 0.2223 87
1735 1.77 0.2025 89
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TABLE 21

ENTHALPY OF THE FURNACE CHAR OF MATERIAL B FORMED AT 1100K
MEASURED IN THE ICE CALORIMETER

Enthalpy
Drop Initial Final 273K
Specimen SRI Run Temperature Weight Weight Reference
Number Number K Grams Grams J/g
CB-38-1B- 7155-21
1105 (R2D)
-1 ,
Run No, 1 815.56 2.1442 2.0426 647.6
Run No., 2 1095.56 2.0426 2.0080 1207.7
CB-38-1B-
1105 (R2D)
-2
Run No. 1 1103.33 2,1925 2.0606 1373.1
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TABLE 23

ENTHALPY OF THE FURNACE CHAR OF MATERIAL B FORMED AT 1370K

MEASURED IN THE ICE CALORIMETER

T
|

+ Enthalpy
Drop Initial Final 273K
Specimen SRI Run Temperature Weight Weight Reference
Number Number K Grams Grams J/q
CB-42-3B- '7155-22
1374 (R2D)
-1 ’
Run No. 813.33 2.3615 2.2805 692.8
Run No. 1108.89 2.2736 2.2506 1175.5
Run No. 1371.67 2.2506 2.1925 1625.7
CB-42-3B- 7155-23
1374 (R2D)
-2
Run No. 1113.89 2.5041 2.3807 1265.5
Run No. 1371.67 2.3807 2.3142 1571.9
CB-40-1B- 7155-29
1382 (R2D)
-1
Run No. 1095 2,.1570 2.0465 1095.2
Run No. 1259.44 2.0465 2,0305 1321.1
Run No. 1360.56 2.0305 1.9872 1775.2
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TABLE 25

ENTHALPY OF THE FURNACE CHAR OF MATERIAL B FORMED AT 1740K

MEASURED IN THE ICE CALORIMETER

-

i
i

|
|
|
|

Enthalpy
Drop Initial Final 273K
Specimen SRI Run Temperature Weight Weight Reference
__ Number Number K Grams Grams J/g
CB-54-3B~ 7155-25
1739 (R2D)
-1
Run No. 810.56 2.4754 2.3807 555.6
Run No. 1377.22 2.3710 2.3525 1624.4
Run No. 1730.00 2.3525 2.0709° 2271.3
CB-54-3B~-
1739 (R2D)
-2 Run No. 1101.11 2.4376 2.3322 1181.7
Run No. 1363.33 2.3322 2.3117 1605.4
Run No. 1721.67 2,.3117 1.5205 2344.1
CB-59-3B-
1735 (R2D)
-3
Run No. 1150.56 2.2434 2.1608 1224.4
Run No. 1427.78 2.1608 2.1467 1728.9
Run No. 1702.22 1.9033 1.7394 2302.7
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THERMAL CONDUCTIVITY TO 1000°F

Apparatus and Procedure

Thermal conductivity runs can be made with any of the three
guarded hot plate apparatuses which are slightly modified from the
standard ASTM C177-45 design. All three are identical in operating
procedure and design except in size and are classified as either the
14", 7", or 3" apparatus depending on the diameter of the specimen
used. Actually the diameters for the 7" and 3" apparatuses are
7-3/8" and 3-1/4", respectively. Specimen thicknesses are from
1/8" to 3" and duplicate specimens are required per run. Figure 1
is a schematic of a typical assembly used for all three apparatuses.

The apparatus consists of a central heater plate surrounded by
a guard heater, each separately controlled. The guard ring is main-
tained at the same temperature as the central heater so that all of
the heat flow is normal to the specimen surfaces. The temperature
differences between the guard and central sections are measured by
means of differential-thermocouple junctions connected in series.
The 14" and 7" apparatuses contain eight differential junctions,
whereas the 3" apparatus contains four. The heater plate is sand-
wiched between layers of filler material, the hot-face thermocouples,
the specimen, cold-face thermocouples, filler material, a copper
plate, and finally a cold source to dissipate the heat. The cold
source consists of a copper coil enclosed in an aluminum box on the
14" apparatus, a copper coil soldered to a copper plate on the 7"
apparatus, and a spiral baffled copper container on the 3" apparatus.
In addition to the thermocouples in contact with the specimen,
thermocouples are located in the central heater and the outer copper
cold plates.

To provide intimate contact at all interfaces, the entire sandwich
assembly is pressed firmly together by spring loading with the total
load application desired, which is usually 600 pounds.

Normally for the determinations between -50°F to 150°F, a filler
material of gum rubber is used. From 150°F to 1000°F Fiberfrax
paper is used as a filler. The overlapping data at 150°F provides
a check on any possible uncertainty due to poor intimate contact
resulting from either specimen or filler surface irregqularities.

If the data agree within approximately 5%, the run is continued;
however, if the agreement is not within 5%, the thermocouples are
replaced, the specimen is removed, surfaces are resanded, and the
run is repeated.



The thermocouples used on the hot and cold s1de of the spec1men
are made from 0.005" diameter chromel-alumel wire electrically .in-
sulated with 0.003" teflon tape. The junction is made by soldering
the wires to a small square of 0.002" thick brass shim stock
called a "getter" The teflon insulated leads are sandwiched between
the specimen and filler material to assure isothermal conditions along
the length of the wire. This arrangement insures that there is no
air film between the specimen and the thermocouples, and that good,
intimate contact exists at all interfaces.

Single thermocouples in the center of the heater plate and cold
plate monitor the temperatures of the heater and cold plates in
order to obtain the over-all temperature drop through the assembly.

The assembly is arranged to operate with the specimen placed in
the apparatus horizontally, as shown in Figure 1. The specimen
required are flat panels sized to fit the apparatus. The assembly is
insulated around the edges by either Fiberfrax or glass wool batt.

A constant voltage transformer is used in conjunction with variable
voltage transformers to assure a constant power supply at each setting.
The central heater and guard heater are controlled individually by the
variable voltage transformers. The voltage and current to the central
heater are monitored by means of a voltmeter and an ammeter which
are switched out of the circuit except when actually being read.

The voltage to the guard heater is monitored constantly by a voltmeter.

All of the thermocouple readings are taken on a Leeds and Northrup
K-3 potentiometer in conjunction with a galvanometer of 0.43 microvolts
per mm deflection sensitivity.

To obtain mean sample temperatures above room temperature, water
is circulated through the cooling section. For mean sample temperatures
below room temperature, cold trlchloroethylene is pumped through the
cooling section. This coolant is chilled by circulating it through
copper coils in a trichloroethylene dry-ice bath. Equilibrium conditions
are certified before readings are taken.

Coefficients of thermal conductivity are calculated from the
expression:

0lg
AAt

kg =

L)



Q = total heat flow - Btu/hr
lg = average thickness of specimens - inches

A

i

area of central heater section - square feet
At = sum of temperature drop across each sample - °F

Theoretically, Q, the heat input, should split, with exactly half
of the input flowing through each sample. The temperature drops
indicate that this condition rarely exists. Instead, there is a
slight unbalance in the heat flow. The above formula then permits
a calculation of the arithmetic average for the two panels. 1In
this calculation the temperatures are measured directly at the faces
of the specimen by the "getters", resulting in a "direct" method.

As a check, the thermal conductivity is calculated for the specimen
with a "series-resistance" or "composite" expression. This method
utilizes the same run data, except that the temperature difference
between the heater plate and the cold plate is utilized and, since
the resistance of the filler is measured separately in the same
apparatus, the following series-resistance equation can be used to
determine the thermal conductivity of the specimen:

kg = ls (2)
(1r/kT) - (p/kF)

1, = thickness of the specimen - inches
kg = thermal conductivity of the specimen - Btu in./hr‘ft2°F

(1p/kep)

thermal resistance of the total composite of filler and
specimen, calculated from the temperature difference
between the hot and cold plate

(1p/kp) = thermal resistance of the filler alone, determined
under the same conditions that exist for (lgp/kgp)

The (lp/kp) term for the gum rubber filler is determined both
with and without copper plates inserted between the rubber pads to
simulate interface resistance that is present during the evaluation
of the specimen.



Improvement and Calibrations on the ASTM C177-5 Technique

The ASTM Cl177-45 guarded hot plate apparatus is only recommended
for determining values below 5 Btu in./hr ft?°F. Due to the higher
conductivities of many of the new reinforced plastics such as the
phenolic graphites and carbons, considerable work was necessary
before the above procedures were incorporated, which provides accurate
data between 5 and 10 Btu in./hr ft2°F, The following is a resume
of the work and analysis performed which extended the range to
10 Btu in./hr ft2°F, .

It was decided at the beginning of the investigation that data
from -50°F to 150°F would be determined using a filler of gum rubber
and determining the conductivity of the specimen by both "direct"
measurement of the temperature drop across the specimen and a "series-
resistance" or "composite" method, as explained. From 150°F to the
maximum temperature, the data would be obtained by using an asbestos
filler and determining the conductivity by a "direct" calculation
from the measured face temperatures of the specimen. Both methods
were used at the 150°F to determine if any uncertainty existed due
to poor intimate contact resulting from either specimen or filler
surface irregularities.

Considerable deviation of approximately 20 percent to 30 percent
occurred between the values obtained for the "composite" method and
the "direct" method for the higher conductivity materials. The
evaluations with plexiglas and pyrex at that time indicated the
following (see Table 1):

1. The "composite" method, when calibrated with pyrex and
plexiglas, exhibited somewhat high values of 8 Btu in./hr
ft?°F at 150°F and +1.23 Btu in./hr ft2°F at 150°F,
respectively. The major difficulty was the great scatter
between different data.

2. The "direct" method, when calibrated with pyrex, was in
error by exhibiting values averaging about 20 percent low.
However, the plexiglas calibration indicated excellent
agreement.

The above results indicated that the conductivity data for values
above 5 Btu in./hr ft?°F should be determined using the composite
method, with the direct method employed for the lower values.

However, the composite method is much too critical under certain
conditions, and data scatter was as high as 30 percent. By considering
equation 2 in close detail, it was found that normal experimental

error in determining (lp/kF) can result in a magnified error of

ks if (lp/kp) is critically close to (lp/kT). With certain conditions,



an error of 3 percent in (lp/kp) can result in a 10 percent to 50 percent
error in ks. Therefore, it was mandatory that the direct method be
~improved for use over the entire range of values, and that the composite’
be used only as a check.

It was determined that a majority of the error obtained with the
direct method was due to the lack of intimate contact at the inter-
faces of the specimens when the load and fillers were improperly
selected. This error was magnified (even percentagewise) when the
conductivities were about 5 Btu in./hr ft2°F. 1In order to obtain
intimate contact at the interfaces, proper selection of compaction
load and filler material for each test material is required. An
extensive evaluation was performed on the effect of measured con-
ductivity of increased compaction loading using either no filler
material or fillers of gum rubber, Fiberfrax, or asbestos. The
specimens used in this evaluation were plexiglas, pyrex, and other
plastic materials, which represented a range of conditions including
different surface finish, flatness, flexibility, and conductivity.
Table 1 presents the calibration data obtained for pyrex and plexi-
glas in the 3" and 7" diameter and 14" square ASTM Cl177-45 guarded
hot plate apparatuses.

Under the normal compaction load of approximately 600 pounds,
the 3" diameter apparatus provided reliable data for plexiglas using
either filler or no filler, and for pyrex using the filler only.
Under the normal load the 14" apparatus provided accurate data for
plexiglas; however, the values were occasionally low on the pyrex
using the direct method of calculation. The 7" diameter apparatus
provided data about 8 percent low for pyrex under normal load with
a gum rubber filler. For plexiglas, the 7" diameter apparatus
provided accurate data under normal compaction loads with no filler
and gum rubber of Fiberfrax filler; however, the data were 7 percent
low using an asbestos filler. Subsequent work indicated that the
7" apparatus was somewhat erratic, so the heater was rebuilt and the
agreement with standards improved even more to within about 5 percent,
although the trend remained similar. Such extensive data were not
reobtained.

Under varying load, the 7" diameter apparatus with gum rubber
filler provided values for pyrex that increased 7.5 percent as the
load was increased from 100 pounds to 600 pounds and only increased
3 percent more from 600 pounds to 4000 pounds. The excessively high
compaction pressures provided values on plexiglas with a gum rubber
filler that were not orderly and were noticeably higher than reported
in the literature for this material, regardless of the technique.



The data obtained with increasing load on the other plastic
materials (not standards) demonstrated in most cases that an increase
in compaction load from the normal 600 pounds did not increase the
values insignificantly but did introduce unorderly changes. It was
apparent, therefore, that excessively high loadings were neither
required nor desirable. As a matter of fact, the bonds between the
resin and reinforcement on some materials could be influenced,
thermally, by such high pressures. Further, stress fields are
created and data obtained here have indicated an influence of stress
on the conductivity of the structures involved for a material such
as plexiglas. The mechanism is probably one of the induced alignment
of the chains.

The major requirements was to provide intimate thermal contact
on all faces, which could be done by the proper selection of compaction
load and filler, depending on the properties of the particular
specimen. The actual load on the sandwich was more important than
the pressure since it is the load and not the pressure that best
correlates with flattening a curved plate or specimen. For example,
it requires more load to”“flatten a 7" plate than it does a 14"
plate. So, if the same pressure were maintained on the two apparatuses,
the lower compaction force on the smaller one would not flatten the
bow. The pressure would be important in providing deformations,
locally, of the filler and/or specimen where a low or high spot may
exist; however, the data on plexiglas and pyrex with rubber and
Fiberfrax, particularly, clearly demonstrated that small compaction
loads were sufficient to provide enough pressure to deform the filler
into local areas. The compaction load needed was not as excessive
as had been suggested in some literature in which the pressure was
considered of major importance. An indication of the importance of
the load-filler combination rather than pressure was apparent from
the data, which provided higher conductivities on the 7" rig with
the rubber filler and 600 pound load than on the same rig with no
filler at 3000 pound load. Higher conductivities were obtained with
the lower pressure by substituting the proper combination of load-
filler.

From the above, it has been decided that the higher thermal con-
ductivity materials can be evaluated accurately by the direct measure-
ment method using a filler if the flat surfaces are held flat, and
the compaction loads are held at a nominal level sufficient to
provide intimate contact at the interfaces. The amount of loading
depends on the flatness, the flexibility of the specimen, and the
type of filler used. For very rigid materials like pyrex, it is
doubtful if enough pressure could be applied when run without filler
without breaking the specimen. No one technique is adequate for the
determination of the conductivity of all specimens over the full
temperature range. Careful judgement is required by the investigator
in each case to select the compaction load, the filler (or no filler),
the heat flow level, and to evaluate the condition of the apparatus.



The above analysis led to the modifications and improvements
which have been made on the ASTM apparatuses beyond those normally
employed to assure better accuracy of the data. The screw loading
device on the 14" apparatus has been modified to incorporate spring
loading at the center and edge clamps to insure more uniform loading,
and thus provide flatter surfaces and more intimate contact. The
edges are monitored with 1 mil pull-out tabs to insure that no gaps
existed in the plates. The thermocouple wires are more carefully
placed along the isothermal surface of the specimen. The Fiberfrax
paper has been adopted as a high temperature filler, since it con-
formed to any irregularities on the surface exceptionally well
allowing the placement of the small thermocouple wires, electrically
insulated with 0,003" teflon tape, without disrupting the intimate
contact required. It has also been noted that increasing the heat
level, and thus the temperature difference, across the specimen provides
less deviation at the 150°F overlap temperature. The minimum
heat flow level depends on the conductivity of the material and cannot
be defined at a given temperature drop. The random deviation be-
tween values on the same specimen as evaluated with rubber filler
from -50°F to 150°F, and with Fiberfrax filler from 150°F to 1000°F,
has been reduced to a maximum of about 5 percent. Past experience
has shown that the Fiberfrax filler provides slightly higher data
on 30 percent of the runs and slightly lower data on the remaining
runs at the change-over temperature (from one filler to the other)
at about 150°F.

Table 1 presents the many calibrations performed on the apparatuses
for both before and after the above improvements were incorporated.
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Notes:

1. Buildup shown is used up to 150°F.

2. Above 150°F, gum rubber on hot surface of specimen is replaced by
two Fiberfrax discs each 1/8 inch thick and a Fiberfrax disc of the
same thickness is placed between the gum rubber and the specimen
on the cold surface.

3. At elevated temperatures, an asbestos disc can be placed between
the gum rubber and Fiberfrax at the cold surfaces to control
temperature drop across the specimen,

Figure 1. Schematic of buildup used for ASTM C177 guarded hot plate
thermal conductivity apparatus



Table 1

CALIBRATIONS OF ASTM C 177 APPARATUSES AND PROCEDURES WITH
PLEXIGLAS AND PYREX 7740 STANDARDS AT ABOUT 150°F to 200°F

(DIRECT METHOD UNLESS OTHERWISE NOTED)

Plexiglas Pyrex
Thermal Conductivity Thermal Conductivity
Apparatus Btu/hr/ft?/°F /in. Btu/hr/f*/°F/in.
14" rig with asbestos or rubber filler, composite
method and 600 pounds 1.33 t0 1. 39 7.1t0 8.9
14" rig with asbestos filler and 600 pounds 1.17 t0 1.20 5. 96
14" rig and rubber filler and 600 pounds 1.19 to 1.22 t0 1. 30 7.35 to 7.39
14" rig with Fiberfrax filler and 600 pounds after
improvements made 1.34 7.64 to 7.83
7" diameter rig with rubber filler and compaction
of:
100 pounds 1.25 -7.%%
600 pounds 1.26 to 1.09 with Q 0%, 7.74
1000 pounds 1,25 0%
3000 pounds - +2.0%
4000 pounds 1.14 t0 1.33 with Q +2. 1%
T" diameter rig with asbestos filler and compaction
of:
100 pounds -
600 pounds 1.11 to 1. 17 5.0
1000 pounds 1.11
3000 pounds -
4000 pounds 1.18
7" diameter rig with no filler with compaction
loads of:
100 pounds 1.12
600 pounds 1.21 4.0
1000 pounds 1.23
3000 pounds 1.27
4000 pounds 1.29
7" diameter rig with Fiberfrax and 600 pounds
after improvements made 1.14 7.13 t0 8.1
3" diameter rig with rubber filler and 600 pounds 1.17 7.3410 1.6
3" diameter rig with Fiberfrax filler and 600 pounds| 1.15, 1.18, 1.19, 1.41t0 1.19 7.4t017.6
3" diameter rig with asbestos filler and 600 pounds | 1.16, 1.16, 1.16 7.28
3" diameter rig without filler and 600 pounds 1.18 to 1.19 6.70 to 6.79

1. Literature and previous work reports the thermal conductivity of plexiglas to be 1. 18.

2. Literature reports the thermal conductivity of 7740 pyrex to be from 7.1 to 8.1 at about 200°F by
Knapp, American Ceramic Society, 1942, and the NBS, respectively. The NBS data are by the

series resistance or composite technique.
about 7.4 to0 7.5.

3. Thicknesses of specimens vary with investigator.

Prior values by the NBS using direct method were
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A COMPARATIVE ROD APPARATUS FOR MEASURING
THERMAL CONDUCTIVITY TO 2000°F




A COMPARATIVE ROD APPARATUS FOR MEASURING
THERMAL CONDUCTIVITY TO 2000°F

Southern Research Institute's comparative rod apparatus is _
used to measure thermal conductivities of a wide variety of materials
from -300°F to 2000°F. This apparatus, shown schematically in
Figure 1, consists basically of two cylindrical reference pieces
of known thermal conductivity stacked in series with the cylindrical
specimen. Heat is introduced to cne end of the rod, composed of
the references and specimen, by a small electrical heater. A
cold sink or heater is employed at the. opposite end of the rod as
required to maintain the temperature drop through the specimen at
the preferred level. Cylinders of zirconia may be inserted in the
rod assembly to assist in controlling the temperature drop.

Radial losses are minimized by means of radial guard heaters surround-
ing the rod and consisting of three separate coils of 16, 18 or
20-gage Kanthal wire wound on a 2 or 4- inch diameter alumina core.
The annulus between the rod and the guard heaters is filled with
diatomaceous earth, thermatomic carbon, bubbled alumina or zirconia
powder. Surrounding the guard is an annulus of diatomaceous earth
enclosed in an aluminum or transite shell.

The specimens and references (see Figure 2) are normally 1-
inch diameter by l-inch long. Thermocouples located 3/4 inch apart
in radially drilled holes measure the axial temperature gradients.
Thermocouples located at matching points in each guard heater are
used to monitor guard temperatures, which are adjusted to match
those at corresponding locations in the test section.

In operation, the apparatus is turned on and allowed to reach
steady state. The guard and rod heaters are adjusted to minimize
radial temperature gradients between the rod and guard section
consistent with maintaining equal heat flows in the references
Temperatures are measured on a Leeds and Northrup Type K-3 potentiometer,
and the temperature gradients calculated. A typical temperature
profile in the test section is shown in Figure 3.

' The thermal conductivity of the specimen is calculated from the
relation

- K,AT + K,AT AXg

28T Xy

K




where K, and K, are the thermal conductivities of the upper and lower
references; AT,, AT, and ATg are the temperature différences in the
upper and lower references and specimen, respectively; AXg and

‘AXy are the distances between thermocouples in the specimen and
references.

Note that for purely axial heat flow, the products K,;AT, and
K2AT, should be equal. Due to imperfectly matched guarding and
other factors, this condition is seldom attained in practice;
therefore, the average of the two values is used in the calculations.
Their difference is maintained as small as possible, usually within
5% of the smaller. :

For identical specimens, the ratio AXg/AXy should be unity
but may vary due to the uncertainty in hole locations. To prevent
introducing an additional error in calculations, AX is determined
as follows: the depth of the hole is measured by inserting a
snugly fitting drill rod in the hole, measuring the projecting length
and subtracting it from the . total length of the rod. The slope,
or angle the hole makes with the perpendicular to the specimen axis,
is determined by making measurements to the face of the hole and
the outer end of the drill rod with respect to a datum plane, using
a dial gage. From these measurements, the location of the bottom
of the hole can be calculated.

Generally, measurements with the comparative rod apparatus are
performed in an inert helium environment. The apparatus can also
be operated in vacuum and at gas pressures of up to 100 psig.

We have had experience operating under all conditions.

The primary reference materials which we use are Code 9606
Pyroceram and Armco iron for measurements on materials with low and
high thermal conductivities, respectively. Primary standard
reference sets are kept and are used to calibrate other references
made from the same materials. The standards of Code 9606 Pyroceram
were made from a batch of material which NBS purchased shortly after
their measurements on a sample of Code 9606 Pyroceram. The curve
which Flynn presented for the thermal conductivity of the Pyroceram
is given in Figure 4.! Note that the curve is in good agreement

! Robinson, H.E. and Flynn, D. R., Proceedings of Third Con-

ference on Thermal Conductivity, pages 308-321, 1963 (with
author's permission)



with the recommended values from NSRDS-NBS 82. The standards of
Armco iron were made from the stock which was used in the round-
robin investigations from which Powell?® developed the most probable
values for Armco iron.  The curve used for the Armco iron standards
is shown in Figure 5. Powell estimated the uncertainty to be within
+2 percent over the temperature range from 0° to 1000°C. Note in
Figure 5 that numerous evaluations of Armco iron from other batches
of material have agreed within 3 percent (coefficient of variation
about curve) with Powell's original data.

In addition to Code 9606 Pyroceram and Armco iron several other
materials have been used as references. These include copper for
high conductivity specimens, 316 stainless steel for specimens of
intermediate thermal conductivity and Teflon or' Pyrex for low
conductivity materials.

Copper references have been calibrated against Armco iron and
excellent agreement with literature data has been obtained. Thermal
conductivity values obtained from calibrations of 316 stainless
steel against Pyroceram, Armco iron and a set of 316 stainless
steel standards are presented in Figure 6. Note the consistency
of the data obtained with the three different sets of references.
The coefficient of variation of the data shown in Figure 6, _
about the curve value, was *3.3%. These data indicate the internal
consistency of the stainless steel and the referepce materials.

Note that the thermal conductivity values for 316 stainless steel
presented in Figure 6 lie between values reported by several
steel manufacturers and Lucks and Deem. *

The calibrations indicate that for materials with moderate -to
high thermal conductivities. the apparatus operates with a precision
of about *3 percent and a total uncertainty of about *5 percent
at temperatures above 0°F if temperatures between the guard and
test section are closely matched. Below 0°F, the precision achieved
. to date has been about *7 percent with a total uncertainty of about
+10 percent. We anticipate that the precision and uncertainty ..
at cryogenic temperatures can be improved by additional calibrations.

2 powell, R. W., C. Y. Ho and P. E. Liley,‘Thermal‘Conductivity
of Selected Materials, NSRDS-NBS 8, Department of Commerce,
November 25, 1966

Powell, R. W., Proceedings of Third Conference on Thermal Con-
ductivity, pages 322-341, 1963

*  WADC TR58-476,'“The Thermophysical Properties of Solid Materials,"”
Armour Research Foundation, November, 1960.



Some additional data obtained on the comparative rod apparatus
are shown in Figure 7 and 8. Figure 7 shows thermal conductivity
data for ATJ graphite, with grain, using Armco iron as the reference
material. These data show excellent agreement with earlier data
obtained here and by other sources® 7. The maximum scatter of the
comparative rod points was about 5 percent. :

Figure 8 shows data for thermocouple grade constantan obtained
on the comparative rod apparatus using Armco iron references, and on
Southern Research Institute's high temperature radial inflow apparatus.
Note the excellent agreement. These data also show close agreement
with data obtained by Silverman® on an alloy of very similar com-
position. '

S  ASD-TDR-62-765, "The Thermal Properties of Twenty-Six Solid
Materials to 5000°F or Their Destruction Temperatures,” Southern
Research Institute, August, 1962

Pears, C. D., Proceedings of Third Conference on Thermal
Conductivity, 453-479 (1963)

7 NSRDS-NBS 16, "Thermal Conductivity of Selected Materials",
Part 2, by C. Y. Ho, R. W. Powell and P. E. Liley, National
Bureaun of Standards, 1968.
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Thermal Conductivity - Btu in./hr ft °F
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APPENDIX C

GUARDED COMPARATIVE ROD APPARATUS




GUARDED COMPARATIVE ROD APPARATUS

The guarded comparative rod apparatus is a modified
assembly of the basic comparative rod apparatus and is employed
fog samples with thermal conductivities less than 10 Btu in./hr
ft°°F.

The reason for this is that analyses [1, 2]! have shown
that heat can shunt the specimen [through the insulation] when
the thermal conductivity of the specimen is not an order-of-
‘magnitude or more than that of the insulation and the guard
heater is, say, twice the diameter of the specimen or more.

Note that the shunting effectively gives a larger specimen area
and results in an erroneously low temperature difference in the
specimen relative to the reference (assuming that the references
have a higher thermal conductivity than the specimen). This
yields erroneously high values of thermal conductivity. With
certain values for the thermal conductivities of the references,
specimen and insulation, guard heater to specimen diameter ratio
and guard to specimen temperature profile, these errors can
easily reach 100 percent.

Analyses [1, 2[ have shown that the heat shunting problem
can be overcome if the following conditions are satisfied:

l. The guard profile matches the specimen profile.

2. The ratio of guard diameter to specimen diameter is
as near one as possible.

These concepts are applied to the modified technique described
here.

The experimental configuration used for the measurements is
shown in Figure 1. The assembly consists of a central column
comprised of a 1 inch diameter specimen sandwiched between two
references of known thermal conductivity. Guard rings made of
the same materials as the specimen and references surrounded the
central column. The guard rings were constructed to match the
specimen and reference lengthwise. The annulus between the
central column and guard ring was 1/16 inch wide which gave a
guard diameter to specimen diameter of 1.125. A drawing of the
specimen and guard ring is given in Figure 2.

'Bracketed numbers denote references given at end of text.



The references used are slip cast fused silica, the
conductivity of which has been defined with the ASTM C 177
guarded hot plate apparatus. The thermal conductivity for
the references are shown in Figure 3.

Heaters made of Armco iron are placed on either end of
the column to control heat flow and mean temperature. Armco
iron is used because its thermal conductivity is about 200
times that of the specimen and; hence, the temperature gradient
along a radial line at the top of the build-up was estimated to
be no more than one or two degrees. Thus, the guard and central
temperatures are matched at the ends. The entire assembly is
surrounded by diatomaceous earth or thermatomic carbon insula-
tion depending on the specimen insulation contained inside a
4 inch diameter guard heater.

Temperatures are measured at two axial locations in each
reference and in the specimen. A beaded chromel/alumel thermo-
couple is inserted into the drilled holes in a 1/32 inch double
bore alumina insulator. The insulator is broken about every 1/8
inch to minimize conduction losses. The thermocouples in the
specimen are potted in place at the bead with Silastic RTV-731,
silicone rubber.

Specimen gage lengths are determined from post-run radio-
graphs or X-rays. The X-rays are examined at 10 x magnification
to determine the gage distance relative to the overall thickness.
Then the relative distances were converted to true distances from
the actual thickness of the specimens.

The idea for the assembly shown in Figure 1 is to use
identical materials for a guard ring and thus create as closely
as possible a matched guard condition to minimize radial heat
exchange and heat shunting. Further, the annulus is kept small
to minimize heat shunting which occurs even with matched guarding.

In practice, perfect matching of the guard and central
columns is not achieved. Hence, corrections for radial heat
exchange are made to the measured data based on the measured
temperature profiles. Further, corrections are made for the heat -
shunting through the annulus. The following paragraphs discuss
these corrections.

Note in Figure 1 that guard temperatures are measured at the
center of each of the three guard sections. These temperatures
are used in the analysis of radial heat exchange. For the analysis
a one-dimensional fin-type heat transfer analysis is used. The
analysis is applied to determine the actual heat flux density into
and out of the specimen based on the measured temperatures in the
references and under the assumption of a linear temperature profile



in the guard. Consider the following sketch for the top reference
and guard (see Figure 1 for identification of thermocouples):

Extrapolated Length
from T and
T 1

rofile in Reference
l-—————Reference ——————a-—////ﬁ——P

3

~s—Specimen —/\ -

Temp

_~—Profile in Guard
(slope = Al)

The temperature profile in the reference is given by

Nx -Nx 1
t=C e + Ce + T +2A (- x) (1)
1- , 2 2 1 8
where
t = temperature
Cl, C2 = constants of integration

VA



h = effective heat transfer coefficient between
two points of radial temperature measurement

p = perimeter of reference

k = thermal conductivity of reference

To solve for Qs, the heat flux density into the specimen
at X = L, equation (1) is subjected to the following boundary
conditions:

t=T €x=o0 ' (2)
k = gt = -0 @X =1L (3)
x . '

A solution is obtained from equation (1) and boundary condi-
tions (2) and (3). There are two unknowns in the resulting
equation; namely, Qg and t. Qg is determined from the known
temperature, T3, at x = 0.25 inch. Note that the interface
temperature at the heater is determined from a linear extrapo-
lation of the reference temperatures. The interface temperature
at the heater is assumed to be the same for the central and guard
columns and is used along with T2, the guard temperature, to
calculate the temperature gradient in the guard, A,.

The same type of analysis is used to calculate the actual
heat flux into the surface of the bottom reference.

The radial heat loss along the specimen is calculated by
assuming a linear temperature profile through the specimen and
through the guard. The actual heat flux into the top of the
specimen is used and heat fluxes are calculated at each thermo-
couple location, at the midpoint of the specimen and at the

bottom of the specimen. If the heat flux calculated at the bottom

of the specimen differed from that calculated from the measurements
at the bottom reference, the'difference is halved and the heat flux
at the top of the specimen is adjusted by that amount. The calcula-
tions for the heat flux profile through the specimen are then
repeated with the adjusted value. Then, the average heat flux
between the points of temperature measurement in the specimen is
calculated from

= Qs; + 2 Qs2 + Qs

Qsp = 1 ()
where

QSp = average heat flux through specimen

Qg1 = heat flux at thermocouple No. 4

Qs2z = heat flux at midpoint of specimen

0
0
I

heat flux at thermocouple No. 6



Now, the measured thermal conductivity is based on the
average heat fluxes through the top and bottom references as
calculated under the assumption of a linear temperature gradient
and no heat losses. The measured thermal conductivity is
converted to the corrected value by the equation

Koy = 252 Xm (5)
Om
where
kor = effective thermal conductivity of specimen corrected

for radial heat exchange

= average heat flow through specimen calculated from
analysis

Qm = average heat flow in references under assumption of
no heat loss

kp = measured thermal conductivity of sample

Next, the method of obtaining the heat transfer coefficients
for use in the analysis of radial heat exchange will be considered.
Note in Figure 1 that the space between points of radial tempera-
ture measurements is filled with either the fused silica or the
specimen and the insulation in the annulus between the central
column and guard. The thermal conductivities of these elements
and the radial thicknesses are used to compute an effective heat
transfer coefficient for the analysis. For example, the heat
transfer coefficient across the 1/16 inch gap between the central
column and guard column is calculated from the equation

h =%k (6)
R, 1n (R /R )

where

w
I

thermal conductivity of material between R1 and R2

Rg = radius of central column

o
i

outer radius
R = inner radius

The thermal resistances of the slip cast fused silica and
the specimen between the points of radial temperature measurement
are also included in the effective heat transfer coefficients. For
the central column the effective heat transfer coefficient is
calculated assuming radii (for Equation 6) of 0.25 and 0.5 inch.




For the guard ring, the radii used in Equation 6 are 0.562 and
0.781 inch. Of course, for this analysis the thermal conductivity
used in Equation 6 is that of the slip cast fused silica or the

speeimen.

The overall heat transfer coefficient used in the analysis of
radial heat exchange is calculated from the equation

h = hg hy hg ' (7)
hg By + h, by + h, h_

where
h = overall heat transfer coefficient used in Equation 1

hs = effective heat transfer coefficient due to radial
thermal resistance of central column

ha = effective heat transfer coefficient of annulus
- between central and guard sections
hg = effective heat transfer coefficient of guard ring

from inner radius to thermocouple location

The heat transfer coefficients are calculated as a function
of temperature. In the analysis of radial heat losses, different
values of the heat transfer coefficient are used for the top
reference, specimen and bottom reference based on the mean tempera-
tures at those locations.

The thermal conductivity values for the slip cast fused silica
which are used to calculate the heat transfer coefficients are
presented in Figure 3. The thermal conductivity values which are
used for the calculation of the effective heat transfer coefficient
of the insulations of diatomaceous earth or thermatomic carbon in
nitrogen at 760mm and vacuum are presented in Figure 4, 5 and 6.
Also shown in Figure 4 are thermal conductivity values for nitrogen.
Literature values for the thermal conductivity of the diatomaceous
earth in air (nitrogen) were found to a temperature of 800°F and
were extrapolated to 2000°F. Values for the thermatomic carbon
were obtained from previous measurements made in our radial inflow
apparatus.

With the above information and the measured thermal conductivity
of the specimen, the heat transfer coefficients in Equation 7 are
calculated.



In addition to the errors associated with radial heat
exchange, there are errors due to the shunting heat flow
around the specimen through the insulation. This error occurs
even with perfect temperature matching of the central and guard
columns. This error has been defined analytically by Flynn [3]

as
L -2 _F (8)
a = k.
1 kr kcr _ g
ko = fer | (9)
l-a
where
k. = final corrected thermal conductivity

koy = measured thermal conductivity corrected for radial
heat exchange

ki = thermal conductivity of insulation
k, = thermal conductivity of references
Fg = a geometrical factor

Flynn [3] gives the following equation for the maximum
value of Fg

e < f;b;/azg -1 —! 1 1o
g L_ n (b/a) | : (10)

where

a = radius of specimen
b = inner radius of guard cylinder

Equations 8, 9 and 10 are used to correct for the shunting
heat flow. The value used for F is 0.116 which is calculated
from Equation (10) for the geome%ry of our system. '

Note that two different corrections are applied to the
experimental data. However, lest one should become overly
concerned with this it should be considered that the maximum
value for both corrections is about 10 percent. Hence, sizeable
uncertainties in the correction procedures do not lend large



uncertainties to the final data. The several sources of
uncertainty and the estimated values are summarized below:

1.

Uncertainty in final data due to uncertainty in
correction analysis, property data used in analysis
and radial temperature differences = 5 percent
(maximum) .

Uncertainty in thermal conductivity of fused silica
references = 5 percent to 500°F, 7 percent to 1800°F

Uncertainty in gage length = 2 percent.

Uncertainty in temperature difference measurements
= 2 percent.

The combined uncertainty for the several sources of uncertainty
listed above is 18 percent to 500°F and +10 percent to 1800°F.
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specimen. The outer ends of the specimen guards are insulated with
graphite tubes filled with thermatomic carbon. These tubes also
hold the specimen in alignment. The combined effect of specimen
guards and thermatomic carbon insulation permits a minimum axial
temperature gradient within the specimen. This gradient is not
detectable by optical pyrometer readings. Visual inspection of the
specimens after runs have verified that no large axial temperature
gradient exists in the specimen. The guards, made of specimen
material display axial distortion of the isothermal lines for
aoorox1mately 1/4" from the outer ends before reaching an apparent
constant axial temperature.

' When sufficient material is available the alternate specimen
conficuration shown in Figure 5 is employed. This specimen, being
1.5" in diameter, provides a larger gage length (0.357") between
temperature wells and allows the installation of three holes on
each radius without exce551ve1y distorting the radial temperature
profiles. Thus this specimen configuration permits a more precise
measurement of the average temperature at each radial location.

As with the smaller specimen, the location of the temperature wells
must be altered for transversely anisotropic specimens.

The annulus between the specimen inside diameter and the
7/32" outside diameter of the calorimeter tube is packed with either
copper granules, graphite or zirconia powder. This packing provides
a positive method for centering the calorimete. within the specimen
and promotes good heat transfer between specimen and calorimeter.

Temperatures up to 2000°F are measured with Chromel/Alumel
thermocouples inserted into the specimen through the sight tubes.
At high temperatures, the temperatures are measured through the cer-
tical sight tubes using a rlght—angle mirror device and optical
pyrometer.

In Figures 1 and 3 showing a typical conductivity calorimeter
apparatus ready for insertion into a furnace for a run, a water-
cooled copper section can be seen at the top of the unit. This
section provides permanent sight tubes to within about 2-1/2" of
the guard specimen, in addition to a permanent mount for the right-
angle mirror device used with the optical pyrometer. Within the
short zone between the water-cooled section and the top guard,
thin-walled graphite sight tubes are fitted. The remainder of the
annulus is filled with thermatomic carbon insulation.

During thermal conductivity runs, the following data are re-
corded: (1) power input, (2) specimen face temperature, (3) specimen
temperatures in the gage section at the two radii, (4) temperature
of the calorimeter water at two points 1/2" apart axially within the
specimen center and (5) water flow rate through the calorimeter. At
least 5 readings are made at each general temperature range to deter-
mine the normal data scatter and to minimize the error that might
be encountered in a single reading.



All thermocouple readings are measured on a Leeds and Northrup
K-3 null balance potentiometer used in conjunction with a galvanometer
of 0.43 microvolts per mm deflection sensitivity. All optically
measured temperatures are read with a Leeds and Northrup Type 8622
optical pyrometer. The flow rate of the calorimeter water is
measured with a Fischer and Porter Stabl-Vis Flowrater.

The thermal conductivity values are computed from the relation:

r
Q 1In 2
K = r

27L ('.'l'.'r';'l‘r1 )

temperature at r, '
the gage length over which the calorimeter AT is measured, for
our present calorimeter is 1/2 inch

where
Q = the heat flow to and measured by the calorimeter
r, = the radius to the outer temperature well
r; = the radius to the inner temperature well
Ty, = temperature at r,

Based on an extensive error analysis and calibrations on

- homogeneous isotropic materials of known thermal conductivities,
such as Armco iron and tungsten, the precision (coefficient of

- variation) in the measurements has been established at *7 percent
over the temperature range. For multiple runs on samples having
similar properties, the uncertainty in a smooth curve through the
data can be established to within *7 percent. A detailed error
analysis has been presented in a paper by Mann and Pears.'

Data obtained here on several high temperature materials
are presented in Figures 6, 7 & 8. Figure 6 is a plot of data
obtained here on tungsten. The specimen for these determinations
were fabricated from stacks of 0.060 inch washers cut from hot
rolled sheet stock. Also plotted are values reported by other
investigators including "recommended values" given by Powell,
Ho and Liley? based on a compilation of 103 sets of data. Agree-

'Mann, W. H. Jr., and C. D. Pears, "A Radial Heat Flow Method for
the Measurement of Thermal Conductivity to 5200°F", presented

at the Conference on Thermal Conductivity Methods, Battelle
Memorial Institute, October 26-28, 1961.

‘Powell, R. W., C. Y. Ho and P. E. Liley, "Thermal Conductivity of
Selected Materials", NSRDS-NBS 8, National Standard Reference Data
Series - National Bureau of Standards - 8, 1966, pp. 11, 54-59,



ment of the recommended values is excellent throughout the tem-
perature range.

Figure 7 shows data obtained here on ATJ graphite, with grain.
This material is premium grade, medlum grain graphite having a
density range of 1.73 to 1.78 gm/cm®. The crosses (+) shown in
the figure are "recommended values" given by Ho, Powell and Liley.?
Again agreement is excellent.

Figure 8 shows data obtained on AXM-5Ql. These data were ob-
tained under a program sponsored by the Air Force Materials Labor-
atory to develop high temperature thermal conductivity standards.
Measurements were made on this material by four laboratories in
addition to Southern Research Institute. The bands shown in Figure 8
represent the range of data reported by the other participating
organlzatlons. A complete presentatlon and discussion of the data
are given in AFML-TR-69-2.

‘Ho, C. Y., R. W. Powell and P, E, Liley, "Thermal Conductivity
of Selected Materials, Part 2, "NSRDS-NBS 16 National Standard
Reference Data Series - National Bureau of Standards-16, pp. 89-128,

“AFML-TR-69-2, "Development of High Temperature Thermal Con-
ductivity Standards" submitted by Arthur D, Little, Inc,, under
Contract AF33 (615)~2874, 1969, pp. 1l15-127.
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APPENDIX E

HEAT CAPACITY TO 1000°F




HEAT CAPACITY TO 1000°F

The heat capacity to 1000°F is determined from data obtained in
an adiabatic calorimeter. In this apparatus the heated specimen
is dropped into a thermally guarded, calibrated cup, and the enthalpy
is measured as a function of the increase in temperature of the
cup. The heat capacity is the slope of the enthalpy versus tempera-
ture curve. A picture of the apparatus is shown in Figure 1.

A tubular furnace and a cold box are used to bring the specimens
to temperature. By pivoting this equipment on a common post near the
calorimeter, the samples are transferred to a position directly over
the calorimeter cup. At this position the specimen is released from
a suspension assembly that is triggered externally. Thermocouples
located near the specimen are used to measure specimen temperature.
The normal specimen size is about 1" x 1" x 1".

Elevated specimen temperatures are maintained by a manual setting
of a variable voltage transformer, which controls the power input to
the furnace. Cold sample temperatures are obtained by filling the
cold box with dry ice and, when required, injecting liquid nitrogen
vapors. The cold box consists of two concentric cylinders enclosed
in a housing. The smaller cylinder (3" diameter by 16" high) is
constructed of 1/4" mesh hardware cloth. The larger cylinder is
made of galvanized sheet metal (15" diameter and 16" high). The -
annulus is partially filled with dry ice. :

Specimens of the materials are heated or cooled to the desired
temperature, and following a stabilization period, are dropped into
the calorimeter cup. Adiabatic conditions are maintained during
each run by manually adjusting cup guard bath temperature.

The covered cup of the drop-type adiabatic calorimeter is
approximately 2-1/2" diameter by 2" deep. Three thermocouple
wells are located in the bottom wall of the cup. The cup is mounted
on cork supports, which rest in a silver-plated copper jacket.
The jacket is immersed in a bath of ethylene glycol which is main-
tained at the temperature of the rup by means of a heater and

copper cooling coils immersed in the liquid. cChilled trichloroethylene

is circulated through the coils to cool the bath below ambient
temperature when cold enthalpy measurements are made. A double-
bladed stirrer maintains uniform bath temperature.

\



In the calorimeter six copper-constantan thermocouples, differen-
tially connected between calorimeter cup and jacket, indicate tempera-
ture difference between cup and bath. The six thermocouples enable
a difference of 0.03°F to be detected. This difference is maintained
to within 0.15°F. During the runs, absolute temperature measurements
of the cup are determined by means of the three thermocouple junctions,
series connected, in the bottom of the calorimeter cup. All of the
thermocouple readings are taken with instruments which permit. readout
to within 0.1°F; however, the system uncertainty is about 0.5°F.

The enthalpy of the specimen at any initial temperature is
calculated from the following equation:
K
h==—(t

Wy (E2 - tli | (1)

enthalpy above t, .
calorimeter constant, 0.2654 Btu/°F
sample weight in lbs

initial cup temperature in °F

final cup temperature in °F

=
n
wananan

The calorimeter constant of 0.2654 Btu/°F was determined by measuring
the enthalpy of an electrolytic copper specimen of known specific
heat. v

The enthalpy is referred to a common base temperature of 85°F
using the following linear interpolation:

1

hgs = - (2)
(ta - tz)
where
hg, enthalpy above the reference temperature of 85°F in Btu/lb

initial sample temperature in °F

The base of 85°F is used because this is usually near the actual final
cup temperature.



The enthalpy-temperature curve established is used to
determine heat capacity (specific heat) by measuring its slope
at different temperatures. This is done both graphically and
by analytical methods which first fit the enthalpy data to an
equation of the following type:

hes = aT + bT? + cT~! + 4 (3)

The temperature (T) employed usually is in degrees Rankine.

While this equation may not provide the best definition of the
enthalpy data over the entire temperature range, it does anticipate
the theoretical behavior and is consistent with methods recommended
in WADC TR 57-308 and by K. K. Kelley.! The derivative of this
equation, the heat capacity, is used with the constant "c" adjusted
so that the analytical solution agrees with the value determined
graphically at 150°F. This technique is similar to that of Kelley
in forcing the heat capacity equation <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>